Full text
PDF![594](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/44412197fbcb/jphysiol01306-0187.png)
![595](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/226ccf3d1ee7/jphysiol01306-0188.png)
![596](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/9c04e1497773/jphysiol01306-0189.png)
![597](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/3f6c6daff43b/jphysiol01306-0190.png)
![598](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/77625876b341/jphysiol01306-0191.png)
![599](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/0d3386489d56/jphysiol01306-0192.png)
![600](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/bc53b8318772/jphysiol01306-0193.png)
![601](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/e8037dee9ca3/jphysiol01306-0194.png)
![602](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/fb0713d7643e/jphysiol01306-0195.png)
![603](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/a0031aaeb3f8/jphysiol01306-0196.png)
![604](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/36c107e81ca6/jphysiol01306-0197.png)
![605](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/cefa9b2286a2/jphysiol01306-0198.png)
![606](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/8f8a99138a94/jphysiol01306-0199.png)
![607](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/f0a0ca29aacc/jphysiol01306-0200.png)
![608](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/92bb2d9229b8/jphysiol01306-0201.png)
![609](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/d3825dd5a7e8/jphysiol01306-0202.png)
![610](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/a47ac8a79958/jphysiol01306-0203.png)
![611](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/4ab4a4a7bf2d/jphysiol01306-0204.png)
![612](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/840930620d6f/jphysiol01306-0205.png)
![613](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/119775154c6c/jphysiol01306-0206.png)
![614](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/aaf1b1867667/jphysiol01306-0207.png)
![615](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/9a40ab9f4573/jphysiol01306-0208.png)
![616](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/0d846ccc8cff/jphysiol01306-0209.png)
![616-2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/7cd7e8995edb/jphysiol01306-0210.png)
![617](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1393/1357053/1833de8212c0/jphysiol01306-0211.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AUSTIN G. M., MCCOUCH G. P. Presynaptic component of intermediary cord potential. J Neurophysiol. 1955 Sep;18(5):441–451. doi: 10.1152/jn.1955.18.5.441. [DOI] [PubMed] [Google Scholar]
- Adrian E. D., Gelfan S. Rhythmic activity in skeletal muscle fibres. J Physiol. 1933 Jun 12;78(3):271–287. doi: 10.1113/jphysiol.1933.sp003002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BALTHASAR K. Morphologie der spinalen Tibialis- und Peronaeus-Kerne bei der Katze; Topographie, Architektonik, Axon- und Dendritenverlauf der Motoneurone und Zwischen-neurone in den Segmenten L6-S2. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr. 1952;188(4):345–378. doi: 10.1007/BF00367982. [DOI] [PubMed] [Google Scholar]
- BROOKS C. M., FUORTES M. G. F. Potential changes in spinal core following administration of strychnine. J Neurophysiol. 1952 Jul;15(4):257–267. doi: 10.1152/jn.1952.15.4.257. [DOI] [PubMed] [Google Scholar]
- BROOKS V. B., WILSON V. J. Localization of stretch reflexes by recurrent inhibition. Science. 1958 Feb 28;127(3296):472–473. doi: 10.1126/science.127.3296.472. [DOI] [PubMed] [Google Scholar]
- CARDIN A. Il tono muscolare non e di natura riflessa; II. Attività del midollo spinale. Boll Soc Ital Biol Sper. 1952 Mar-Apr;28(3):368–369. [PubMed] [Google Scholar]
- COOMBS J. S., CURTIS D. R., LANDGREN S. Spinal cord potentials generated by impulses in muscle and cutaneous afferent fibres. J Neurophysiol. 1956 Sep;19(5):452–467. doi: 10.1152/jn.1956.19.5.452. [DOI] [PubMed] [Google Scholar]
- ECCLES J. C., McINTYRE A. K. The effects of disuse and of activity on mammalian spinal reflexes. J Physiol. 1953 Sep;121(3):492–516. doi: 10.1113/jphysiol.1953.sp004961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ECCLES J. C., RALL W. Effects induced in a monosynaptic reflex path by its activation. J Neurophysiol. 1951 Sep;14(5):353–376. doi: 10.1152/jn.1951.14.5.353. [DOI] [PubMed] [Google Scholar]
- GELFAN S., TARLOV I. M. Differential vulnerability of spinal cord structures to anoxia. J Neurophysiol. 1955 Mar;18(2):170–188. doi: 10.1152/jn.1955.18.2.170. [DOI] [PubMed] [Google Scholar]
- GELFAN S., TARLOV I. M. Physiology of spinal cord, nerve root and peripheral nerve compression. Am J Physiol. 1956 Apr;185(1):217–229. doi: 10.1152/ajplegacy.1956.185.1.217. [DOI] [PubMed] [Google Scholar]
- GRANIT R. Reflex rebound by post-tetanic potentiation; temporal summation-spasticity. J Physiol. 1956 Jan 27;131(1):32–51. doi: 10.1113/jphysiol.1956.sp005442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNT C. C., PAINTAL A. S. Spinal reflex regulation of fusimotor neurones. J Physiol. 1958 Sep 23;143(2):195–212. doi: 10.1113/jphysiol.1958.sp006053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNT C. C. The effect of stretch receptors from muscle on the discharge of motorneurons. J Physiol. 1952 Jul;117(3):359–379. doi: 10.1113/jphysiol.1952.sp004754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNT C. C. The reflex activity of mammalian small-nerve fibres. J Physiol. 1951 Dec 28;115(4):456–469. doi: 10.1113/jphysiol.1951.sp004681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOLMODIN G. M. Integrative processes in single spinal interneurones with proprioceptive connections. Acta Physiol Scand Suppl. 1957;40(139):1–89. [PubMed] [Google Scholar]
- KROGH E. The effect of acute hypoxia on the motor cells of the spinal cord. Acta Physiol Scand. 1950 May 30;20(4):263–292. doi: 10.1111/j.1748-1716.1950.tb00704.x. [DOI] [PubMed] [Google Scholar]
- LAPORTE Y., LLOYD D. P. C. Nature and significance of the reflex connections established by large afferent fibers of muscular origin. Am J Physiol. 1952 Jun;169(3):609–621. doi: 10.1152/ajplegacy.1952.169.3.609. [DOI] [PubMed] [Google Scholar]
- LINDBLOM U. F., OTTOSSON J. O. Bulbar influence on spinal cord dorsum potentials and ventral root reflexes. Acta Physiol Scand. 1956 Feb 20;35(3-4):203–214. doi: 10.1111/j.1748-1716.1955.tb01278.x. [DOI] [PubMed] [Google Scholar]
- LLOYD D. P. C. Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J Gen Physiol. 1949 Nov;33(2):147–170. doi: 10.1085/jgp.33.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LLOYD D. P., WILSON V. J. Reflex depression in rhythmically active monosynaptic reflex pathways. J Gen Physiol. 1957 Jan 20;40(3):409–426. doi: 10.1085/jgp.40.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUCO J. V., EYZAGUIRRE C. Fibrillation and hypersensitivity to ACh in denervated muscle: effect of length of degenerating nerve fibers. J Neurophysiol. 1955 Jan;18(1):65–73. doi: 10.1152/jn.1955.18.1.65. [DOI] [PubMed] [Google Scholar]
- MARK V. H., GASTEIGER E. L. Observations on the role of afferent and descending impulses on the spontaneous potentials of the spinal cord. Electroencephalogr Clin Neurophysiol. 1953 May;5(2):251–258. doi: 10.1016/0013-4694(53)90012-1. [DOI] [PubMed] [Google Scholar]
- MURRAY J. G., THOMPSON J. W. The occurrence and function of collateral sprouting in the sympathetic nervous system of the cat. J Physiol. 1957 Jan 23;135(1):133–162. doi: 10.1113/jphysiol.1957.sp005700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCOUCH G. P., AUSTIN G. M., LIU C. N., LIU C. Y. Sprouting as a cause of spasticity. J Neurophysiol. 1958 May;21(3):205–216. doi: 10.1152/jn.1958.21.3.205. [DOI] [PubMed] [Google Scholar]
- ROMANES G. J. The motor cell columns of the lumbo-sacral spinal cord of the cat. J Comp Neurol. 1951 Apr;94(2):313–363. doi: 10.1002/cne.900940209. [DOI] [PubMed] [Google Scholar]
- TEASDALL R. D., STAVRAKY G. W. Responses of deafferented spinal neurones to corticospinal impulses. J Neurophysiol. 1953 Jul;16(4):367–375. doi: 10.1152/jn.1953.16.4.367. [DOI] [PubMed] [Google Scholar]
- ten CATE J. Spontaneous electrical activity of the spinal cord. Electroencephalogr Clin Neurophysiol. 1950 Nov;2(4):445–451. doi: 10.1016/0013-4694(50)90080-0. [DOI] [PubMed] [Google Scholar]