Full text
PDF![487](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/400e797b9351/jphysiol01302-0066.png)
![488](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/aa57dbf361d6/jphysiol01302-0067.png)
![489](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/486122e42e33/jphysiol01302-0068.png)
![490](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/929942ffbd4e/jphysiol01302-0069.png)
![491](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/d27e3d2339f7/jphysiol01302-0070.png)
![492](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/fbc5ca07308f/jphysiol01302-0071.png)
![493](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/14c11d603f8f/jphysiol01302-0072.png)
![494](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/4849033a6d84/jphysiol01302-0073.png)
![495](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/2f8903da4fa1/jphysiol01302-0074.png)
![496](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/ade72397b5f2/jphysiol01302-0075.png)
![497](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/eaf307dd5fb0/jphysiol01302-0076.png)
![498](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/b62ffc4da953/jphysiol01302-0077.png)
![499](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/880b5d5c692e/jphysiol01302-0078.png)
![500](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/72e47ce6c096/jphysiol01302-0079.png)
![501](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/b0a7dc2ec7b0/jphysiol01302-0080.png)
![502](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/5817df60afb0/jphysiol01302-0081.png)
![503](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/2e8ab7c0f56b/jphysiol01302-0082.png)
![504](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/be3368143aee/jphysiol01302-0083.png)
![505](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/f6b0b1bb53d6/jphysiol01302-0084.png)
![506](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/8f16d9c4590d/jphysiol01302-0085.png)
![507](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/51515c72d984/jphysiol01302-0086.png)
![508](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/e6084b396fbb/jphysiol01302-0087.png)
![509](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/577f2c1bec41/jphysiol01302-0088.png)
![510](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4036/1357099/3e42dda1a780/jphysiol01302-0089.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALMEN M. C., DRURY D. R., WICK A. N. Rate of elimination of labeled carbon dioxide from the body. Am J Physiol. 1956 Aug;186(2):361–364. doi: 10.1152/ajplegacy.1956.186.2.361. [DOI] [PubMed] [Google Scholar]
- ANDRES R., CADER G., ZIERLER K. L. The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state; measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest. 1956 Jun;35(6):671–682. doi: 10.1172/JCI103324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAKER N., SHREEVE W. W., SHIPLEY R. A., INCEFY G. E., MILLER M. C14 studies in carbohydrate metabolism. I. The oxidation of glucose in normal human subjects. J Biol Chem. 1954 Dec;211(2):575–592. [PubMed] [Google Scholar]
- BLOOM B., STETTEN M. R., STETTEN D., Jr Evaluation of catabolic pathways of glucose in mammalian systems. J Biol Chem. 1953 Oct;204(2):681–694. [PubMed] [Google Scholar]
- COXON R. V., ROBINSON R. J. The transport of radioactive carbon dioxide in the blood stream of the dog after administration of radioactive bicarbonate. J Physiol. 1959 Oct;147:469–486. doi: 10.1113/jphysiol.1959.sp006257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cargill W. H., Hickam J. B. THE OXYGEN CONSUMPTION OF THE NORMAL AND THE DISEASED HUMAN KIDNEY. J Clin Invest. 1949 May;28(3):526–532. doi: 10.1172/JCI102100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FISHER R. B., PARSONS D. S. Glucose movements across the wall of the rat small intestine. J Physiol. 1953 Feb 27;119(2-3):210–223. doi: 10.1113/jphysiol.1953.sp004839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEIGER A. Correlation of brain metabolism and function by the use of a brain perfusion method in situ. Physiol Rev. 1958 Jan;38(1):1–20. doi: 10.1152/physrev.1958.38.1.1. [DOI] [PubMed] [Google Scholar]
- GEY K. F. The concentration of glucose in rat tissues. Biochem J. 1956 Sep;64(1):145–150. doi: 10.1042/bj0640145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORDON R. S., Jr Unesterified fatty acid in human blood plasma. II. The transport function of unesterified fatty acid. J Clin Invest. 1957 Jun;36(6 Pt 1):810–815. doi: 10.1172/JCI103486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irving L., Ferguson J. K., Plewes F. B. The source of co(2) expired and the site of its retention. J Physiol. 1930 Mar 17;69(1):113–123. doi: 10.1113/jphysiol.1930.sp002638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MYERS J. D. Net splanchnic glucose production in normal man and in various disease states. J Clin Invest. 1950 Nov;29(11):1421–1429. doi: 10.1172/JCI102380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBINSON R. J., COXON R. V. Radioactivity of blood carbon dioxide in animals oxidizing glucose labelled with carbon-14 and other labelled substances. Nature. 1957 Dec 7;180(4597):1279–1281. doi: 10.1038/1801279a0. [DOI] [PubMed] [Google Scholar]
- SACKS W. Cerebral metabolism of isotopic glucose in normal human subjects. J Appl Physiol. 1957 Jan;10(1):37–44. doi: 10.1152/jappl.1957.10.1.37. [DOI] [PubMed] [Google Scholar]
- SACKS W. Cerebral metabolism of isotopic lipid and protein derivatives in normal human subjects. J Appl Physiol. 1958 Mar;12(2):311–318. doi: 10.1152/jappl.1958.12.2.311. [DOI] [PubMed] [Google Scholar]
- SACKS W. Cerebral oxidation of fumarate-2-C14 in normal human subjects. J Appl Physiol. 1956 Jul;9(1):43–48. doi: 10.1152/jappl.1956.9.1.43. [DOI] [PubMed] [Google Scholar]
- SEARLE G. L., STRISOWER E. H., CHAIKOFF I. L. Determination of rates of glucose oxidation in normal and diabetic dogs by a technique involving continuous injection of C14-glucose. Am J Physiol. 1956 Jun;185(3):589–594. doi: 10.1152/ajplegacy.1956.185.3.589. [DOI] [PubMed] [Google Scholar]
- STEELE R., WALL J. S., DE BODO R. C., ALTSZULER N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Physiol. 1956 Sep;187(1):15–24. doi: 10.1152/ajplegacy.1956.187.1.15. [DOI] [PubMed] [Google Scholar]