Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1959 Oct;147(3):591–625. doi: 10.1113/jphysiol.1959.sp006264

The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle

R D Keynes, R C Swan
PMCID: PMC1357105  PMID: 14408742

Full text

PDF
591

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CAREY M. J., CONWAY E. J. Comparison of various media for immersing frog sartorii at room temperature, and evidence for the regional distribution of fibre Na+. J Physiol. 1954 Aug 27;125(2):232–250. doi: 10.1113/jphysiol.1954.sp005154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DESMEDT J. E. Electrical activity and intracellular sodium concentration in frog muscle. J Physiol. 1953 Jul;121(1):191–205. doi: 10.1113/jphysiol.1953.sp004940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EDWARDS C., HARRIS E. J., NISHIE K. The exchange of frog muscle Na+ and K+ in the presence of the anions Br-, NO3-, I- and CNS-. J Physiol. 1957 Mar 11;135(3):560–566. doi: 10.1113/jphysiol.1957.sp005730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GLYNN I. M. The ionic permeability of the red cell membrane. Prog Biophys Biophys Chem. 1957;8:241–307. [PubMed] [Google Scholar]
  7. HARRIS E. J., STEINBACH H. B. The extraction of ions from muscle by water and sugar solutions with a study of the degree of exchange with tracer of the sodium and potassium in the extracts. J Physiol. 1956 Aug 28;133(2):385–401. doi: 10.1113/jphysiol.1956.sp005594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HODGKIN A. L., HOROWICZ P. Movements of Na and K in single muscle fibres. J Physiol. 1959 Mar 3;145(2):405–432. doi: 10.1113/jphysiol.1959.sp006150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HODGKIN A. L., KEYNES R. D. Active transport of cations in giant axons from Sepia and Loligo. J Physiol. 1955 Apr 28;128(1):28–60. doi: 10.1113/jphysiol.1955.sp005290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KEYNES R. D., MAISEL G. W. The energy requirement for sodium extrusion from a frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):383–392. doi: 10.1098/rspb.1954.0031. [DOI] [PubMed] [Google Scholar]
  11. KEYNES R. D., SWAN R. C. The permeability of frog muscle fibres to lithium ions. J Physiol. 1959 Oct;147:626–638. doi: 10.1113/jphysiol.1959.sp006265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KEYNES R. D. The ionic fluxes in frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):359–382. doi: 10.1098/rspb.1954.0030. [DOI] [PubMed] [Google Scholar]
  13. KUFFLER S. W., VAUGHAN WILLIAMS E. M. Properties of the 'slow' skeletal muscles fibres of the frog. J Physiol. 1953 Aug;121(2):318–340. doi: 10.1113/jphysiol.1953.sp004949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SCHOU M. Biology and pharmacology of the lithium ion. Pharmacol Rev. 1957 Mar;9(1):17–58. [PubMed] [Google Scholar]
  15. SHANES A. M. Distinction between effects on metabolic transport and passive transfer of ions. Science. 1956 Oct 19;124(3225):724–725. doi: 10.1126/science.124.3225.724. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES