Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1964 Dec;175(2):275–294.4. doi: 10.1113/jphysiol.1964.sp007517

The space accessible to albumin within the striated muscle fibre of the toad

D K Hill
PMCID: PMC1357118  PMID: 14241168

Full text

PDF
275

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNARD E. A., MARBROOK J. Quantitative cytochemistry using directly applied radioactive reagents. Nature. 1961 Feb 4;189:412–413. doi: 10.1038/189412a0. [DOI] [PubMed] [Google Scholar]
  2. CARLSEN F., KNAPPEIS G. G., BUCHTHAL F. Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch. J Biophys Biochem Cytol. 1961 Oct;11:95–117. doi: 10.1083/jcb.11.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ENDO M. ENTRY OF A DYE INTO THE SARCOTUBULAR SYSTEM OF MUSCLE. Nature. 1964 Jun 13;202:1115–1116. doi: 10.1038/2021115b0. [DOI] [PubMed] [Google Scholar]
  4. FATT P. AN ANALYSIS OF THE TRANSVERSE ELECTRICAL IMPEDANCE OF STRIATED MUSCLE. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:606–651. doi: 10.1098/rspb.1964.0023. [DOI] [PubMed] [Google Scholar]
  5. FAWCETT D. W., REVEL J. P. The sarcoplasmic reticulum of a fast-acting fish muscle. J Biophys Biochem Cytol. 1961 Aug;10(4):89–109. doi: 10.1083/jcb.10.4.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FRANZINIARMSTRONG C. SARCOLEMMAL INVAGINATIONS AND THE T-SYSTEM IN FISH SKELETAL MUSCLE. Nature. 1964 Apr 25;202:355–357. doi: 10.1038/202355a0. [DOI] [PubMed] [Google Scholar]
  7. HARRIS E. J. Distribution and movement of muscle chloride. J Physiol. 1963 Apr;166:87–109. doi: 10.1113/jphysiol.1963.sp007092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HILL A. V., MACPHERSON L. The effect of nitrate, iodide and bromide on the duration of the active state in skeletal muscle. Proc R Soc Lond B Biol Sci. 1954 Dec 15;143(910):81–102. doi: 10.1098/rspb.1954.0055. [DOI] [PubMed] [Google Scholar]
  9. HILL D. K. Autoradiographic localization of adenine nucleotide in frog's striated muscle. J Physiol. 1959 Jan 28;145(1):132–174. doi: 10.1113/jphysiol.1959.sp006133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HILL D. K. Preferred sites of adenine nucleotide in frog's striated muscle. J Physiol. 1960 Oct;153:433–446. doi: 10.1113/jphysiol.1960.sp006545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HILL D. K. THE LOCATION OF ADENINE NUCLEOTIDE IN THE STRIATED MUSCLE OF THE TOAD. J Cell Biol. 1964 Mar;20:435–458. doi: 10.1083/jcb.20.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HILL D. K. The location of creatine phosphate in frog's striated muscle. J Physiol. 1962 Oct;164:31–50. doi: 10.1113/jphysiol.1962.sp007000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., HOROWICZ P. The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J Physiol. 1960 Sep;153:370–385. doi: 10.1113/jphysiol.1960.sp006540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HUXLEY A. F. Local activation of muscle. Ann N Y Acad Sci. 1959 Aug 28;81:446–452. doi: 10.1111/j.1749-6632.1959.tb49326.x. [DOI] [PubMed] [Google Scholar]
  15. HUXLEY A. F. Local activation of striated muscle from the frog and the crab. J Physiol. 1957 Jan 23;135(1):17–8P. [PubMed] [Google Scholar]
  16. HUXLEY A. F. MUSCLE. Annu Rev Physiol. 1964;26:131–152. doi: 10.1146/annurev.ph.26.030164.001023. [DOI] [PubMed] [Google Scholar]
  17. HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  19. NELSON D. A., BENSON E. S. On the structural continuities of the transverse tubular system of rabbit and human myocardial cells. J Cell Biol. 1963 Feb;16:297–313. doi: 10.1083/jcb.16.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PAGE S. G., HUXLEY H. E. FILAMENT LENGTHS IN STRIATED MUSCLE. J Cell Biol. 1963 Nov;19:369–390. doi: 10.1083/jcb.19.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. PAPPENHEIMER J. R. Passage of molecules through capillary wals. Physiol Rev. 1953 Jul;33(3):387–423. doi: 10.1152/physrev.1953.33.3.387. [DOI] [PubMed] [Google Scholar]
  22. PEACHEY L. D., HUXLEY A. F. Structural identification of twitch and slow striated muscle fibers of the frog. J Cell Biol. 1962 Apr;13:177–180. doi: 10.1083/jcb.13.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. PEACHEY L. D. Structure of the longitudinal body muscles of amphioxus. J Biophys Biochem Cytol. 1961 Aug;10(4):159–176. doi: 10.1083/jcb.10.4.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. ROBERTSON J. D. Some features of the ultrastructure of reptilian skeletal muscle. J Biophys Biochem Cytol. 1956 Jul 25;2(4):369–380. doi: 10.1083/jcb.2.4.369. [DOI] [PubMed] [Google Scholar]
  26. SIMPSON F. O., OERTELIS S. J. The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system. J Cell Biol. 1962 Jan;12:91–100. doi: 10.1083/jcb.12.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. VERATTI E. Investigations on the fine structure of striated muscle fiber read before the Reale Istituto Lombardo, 13 March 1902. J Biophys Biochem Cytol. 1961 Aug;10(4):1–59. doi: 10.1083/jcb.10.4.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES