Full text
PDF![741](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/389ad3aed06e/jphysiol01168-0070.png)
![742](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/cdf796258d09/jphysiol01168-0071.png)
![743](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/2b1bcf4f764e/jphysiol01168-0072.png)
![744](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/64044ee2e980/jphysiol01168-0073.png)
![745](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/6d0702403b84/jphysiol01168-0074.png)
![746](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/47b0b8d5e4ee/jphysiol01168-0075.png)
![747](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/bb717dd1067b/jphysiol01168-0076.png)
![748](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/f7a5583dd7f4/jphysiol01168-0077.png)
![749](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/0ef858ab9471/jphysiol01168-0078.png)
![750](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/7d21ee9f7446/jphysiol01168-0079.png)
![751](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/0ec3758b68fb/jphysiol01168-0080.png)
![752](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/63b0546860af/jphysiol01168-0081.png)
![752-1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/1ff62329fac2/jphysiol01168-0082.png)
![752-2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/31cd7e166235/jphysiol01168-0083.png)
![753](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/1357419/6d816ed60676/jphysiol01168-0084.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALTMAN J. DIFFERENCES IN THE UTILIZATION OF TRITIATED LEUCINE BY SINGLE NEURONES IN NORMAL AND EXERCISED RATS: AN AUTORADIOGRAPHIC INVESTIGATION WITH MICRODENSITOMETRY. Nature. 1963 Aug 24;199:777–780. doi: 10.1038/199777a0. [DOI] [PubMed] [Google Scholar]
- Aitken J. T., Sharman M., Young J. Z. Maturation of regenerating nerve fibres with various peripheral connexions. J Anat. 1947 Jan;81(Pt 1):1–22.2. [PMC free article] [PubMed] [Google Scholar]
- BRATTGARD S. O., EDSTROM J. E., HYDEN H. The chemical changes in regenerating neurons. J Neurochem. 1957;1(4):316–325. doi: 10.1111/j.1471-4159.1957.tb12088.x. [DOI] [PubMed] [Google Scholar]
- BRATTGARD S. O., HYDEN H., SJOSTRAND J. Incorporation of orotic acid-14c and lysine-14c in regenerating single nerve cells. Nature. 1958 Sep 20;182(4638):801–802. doi: 10.1038/182801b0. [DOI] [PubMed] [Google Scholar]
- EDSTROM J. E. Ribonucleic acid mass and concentration in individual nerve cells; a new method for quantitative determinations. Biochim Biophys Acta. 1953 Nov;12(3):361–386. doi: 10.1016/0006-3002(53)90155-3. [DOI] [PubMed] [Google Scholar]
- FEINENDEGEN L. E., BOND V. P. Observations on nuclear RNA during mitosis in human cancer cells in culture (HeLa-S3), studied with tritiated cytidine. Exp Cell Res. 1963 Apr;30:393–404. doi: 10.1016/0014-4827(63)90311-2. [DOI] [PubMed] [Google Scholar]
- FISCHER J., LODIN Z., KOLOUSEK J. A histoautoradiographic study of the effect of section of the facial nerve on the uptake of methionine-35S by the cells of the facial nerve nucleus. Nature. 1958 Feb 1;181(4605):341–342. doi: 10.1038/181341a0. [DOI] [PubMed] [Google Scholar]
- FITZGERALD P. J., VINIJCHAIKUL K. Nucleic acid metabolism of pancreatic cells as revealed by cytidine-H3 and thymidine-H3. Lab Invest. 1959 Jan-Feb;8(1):319–329. [PubMed] [Google Scholar]
- FRIEDE R. L. INTERPRETATION OF HYPERCHROMIC NERVE CELLS: RELATIVE SIGNIFICANCE OF THE TYPE OF FIXATIVE USED, OF THE OSMOLARITY OF THE CYTOPLASM AND THE SURROUNDING FLUID IN THE PRODUCTION OF CELL SHRINKAGE. J Comp Neurol. 1963 Aug;121:137–149. doi: 10.1002/cne.901210110. [DOI] [PubMed] [Google Scholar]
- FRIEDE R. L. The cytochemistry of normal and reactive astrocytes. J Neuropathol Exp Neurol. 1962 Jul;21:471–478. doi: 10.1097/00005072-196207000-00015. [DOI] [PubMed] [Google Scholar]
- FRIEDE R. L. Transport of oxidative enzymes in nerve fibers: a histochemical investigation of the regenerative cycle in neurons. Exp Neurol. 1959 Nov;1:441–466. doi: 10.1016/0014-4886(59)90043-3. [DOI] [PubMed] [Google Scholar]
- GEIGER A., YAMASAKI S. Cytidine and uridine requirement of the brain. J Neurochem. 1956 Dec;1(2):93–100. doi: 10.1111/j.1471-4159.1956.tb12059.x. [DOI] [PubMed] [Google Scholar]
- GOLDSTEIN L., MICO U. J., CROCKER T. T. Nuclear-cytoplasmic relationships in human cells in tissue culture. IV. A study of some aspects of nucleic acid and protein metabolism in enucleate cells. Biochim Biophys Acta. 1960 Dec 4;45:82–86. doi: 10.1016/0006-3002(60)91428-1. [DOI] [PubMed] [Google Scholar]
- GROS F., HIATT H., GILBERT W., KURLAND C. G., RISEBROUGH R. W., WATSON J. D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature. 1961 May 13;190:581–585. doi: 10.1038/190581a0. [DOI] [PubMed] [Google Scholar]
- Goldstein L., Plaut W. DIRECT EVIDENCE FOR NUCLEAR SYNTHESIS OF CYTOPLASMIC RIBOSE NUCLEIC ACID. Proc Natl Acad Sci U S A. 1955 Nov 15;41(11):874–880. doi: 10.1073/pnas.41.11.874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALEY T. J., MCCORMICK W. G. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother. 1957 Mar;12(1):12–15. doi: 10.1111/j.1476-5381.1957.tb01354.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
- KIMBALL R. F., PERDUE S. W. Quantitative cytochemical studies on Paramecium. V. Autoradiographic studies of nucleic acid syntheses. Exp Cell Res. 1962 Sep;27:405–415. doi: 10.1016/0014-4827(62)90005-8. [DOI] [PubMed] [Google Scholar]
- LASANSKY A. Morphological bases for a nursing role of glia in the toad retina. Electron microscope observations. J Biophys Biochem Cytol. 1961 Oct;11:237–243. doi: 10.1083/jcb.11.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PERRY R. P., ERRERA M. The role of the nucleolus in ribonucleic acid-and protein synthesis. I. Incorporation of cytidine into normal and nucleolar inactivated HeLa cells. Biochim Biophys Acta. 1961 Apr 29;49:47–57. doi: 10.1016/0006-3002(61)90868-x. [DOI] [PubMed] [Google Scholar]
- ROBERTSON J. S. Theory and use of tracers in determining transfer rates in biological systems. Physiol Rev. 1957 Apr;37(2):133–154. doi: 10.1152/physrev.1957.37.2.133. [DOI] [PubMed] [Google Scholar]
- STENRAM U. Interferometric determinations of the ribose nucleic acid concentration in liver nucleoli of protein-fed and protein-deprived rats. Exp Cell Res. 1958 Aug;15(1):174–183. doi: 10.1016/0014-4827(58)90073-9. [DOI] [PubMed] [Google Scholar]
- WOODS P. S., TAYLOR J. H. Studies of ribonucleic acid metabolism with tritium-labeled cytidine. Lab Invest. 1959 Jan-Feb;8(1):309–318. [PubMed] [Google Scholar]
- ZALOKAR M. Nuclear origin of ribonucleic acid. Nature. 1959 May 9;183(4671):1330–1330. doi: 10.1038/1831330a0. [DOI] [PubMed] [Google Scholar]