Abstract
1. The variation of isometric tetanus tension with sarcomere length in single fibres from frog striated muscle has been re-investigated with special precautions to ensure uniformity of sarcomere length within the part of the fibre being studied.
2. In most respects the results of Ramsey & Street (1940) were confirmed, but (a) the peak of the curve was found to consist of a plateau between sarcomere lengths of 2·05 and 2·2 μ, (b) the decline of tension above this plateau is steeper than found by Ramsey & Street, and (c) the decline of tension below the plateau becomes suddenly steeper at a sarcomere length of about 1·67 μ.
3. Many features of this length—tension relation are simply explained on the sliding-filament theory.
4. It is concluded that, in the plateau and at greater lengths, the tension on each thin filament is made up of equal contributions from each bridge which it overlaps on adjacent thick filaments.
5. Internal resistance to shortening is negligible in this range but becomes progressively more important with shortening below the plateau.
Full text
PDF






















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABBOTT B. C., WILKIE D. R. The relation between velocity of shortening and the tension-length curve of skeletal muscle. J Physiol. 1953 Apr 28;120(1-2):214–223. doi: 10.1113/jphysiol.1953.sp004886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott G. F., Lowy J., Millman B. M. X-ray diffraction from living striated muscle during contraction. Nature. 1965 Jun 26;206(991):1357–1358. doi: 10.1038/2061357a0. [DOI] [PubMed] [Google Scholar]
- Gordon A. M., Huxley A. F., Julian F. J. Tension development in highly stretched vertebrate muscle fibres. J Physiol. 1966 May;184(1):143–169. doi: 10.1113/jphysiol.1966.sp007908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F. A DISCUSSION ON THE PHYSICAL AND CHEMICAL BASIS OF MUSCULAR CONTRACTION. INTRODUCTORY REMARKS. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:434–437. doi: 10.1098/rspb.1964.0052. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F., PEACHEY L. D. The maximum length for contraction in vertebrate straiated muscle. J Physiol. 1961 Apr;156:150–165. doi: 10.1113/jphysiol.1961.sp006665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY H. E. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957 Sep 25;3(5):631–648. doi: 10.1083/jcb.3.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY H. E. X-ray analysis and the problem of muscle. Proc R Soc Lond B Biol Sci. 1953 Mar 11;141(902):59–62. doi: 10.1098/rspb.1953.0017. [DOI] [PubMed] [Google Scholar]
- KNAPPEIS G. G., CARLSEN F. The ultrastructure of the Z disc in skeletal muscle. J Cell Biol. 1962 May;13:323–335. doi: 10.1083/jcb.13.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAGE S. G., HUXLEY H. E. FILAMENT LENGTHS IN STRIATED MUSCLE. J Cell Biol. 1963 Nov;19:369–390. doi: 10.1083/jcb.19.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
