Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1966 May;184(1):215–238. doi: 10.1113/jphysiol.1966.sp007912

Intracellular and extracellular compartments of mammalian central nervous tissue*

A Ames III, Frances B Nesbett
PMCID: PMC1357556  PMID: 5921539

Abstract

1. Isolated rabbit retina was used as a prototype of grey matter to study the partition of water and electrolytes between the intracellular and extracellular phase. Previously published morphologic, chemical, and functional evidence has shown that it can be maintained in vitro in a nearly physiological state.

2. Following equilibration with mannitol or inulin, retinas were eluted in isotonic tris acetate at 0° C, and measurements were made of the rates at which K+, Na+, Cl- and inulin or mannitol diffused from the tissue.

3. K+ was eluted slowly according to a single exponential decay. The Na+ and Cl- elution curves demonstrated two phases which could be dissected into a rapid, multicomponent regression superimposed upon a slow exponential decrease.

4. The volume of distribution of the readily elutable Na+ equalled that of the readily elutable Cl- and corresponded closely to the volume of distribution of mannitol and inulin. On the basis of these and previously published data, the interstitial fluid was estimated to constitute 31% (w/w) of rabbit retina and 22% of rabbit brain.

5. The composition of the extracellular fluid of retina resembled closely that of the medium in which the tissue had been previously incubated.

6. Inulin, mannitol, and NaCl diffused through the less accessible portions of the extracellular space at rates which differed from one another as predicted from the diffusion coefficients of these solutes. Their diffusion through the more accessible portions of the extracellular space was apparently affected by bulk flow of the fluid.

7. The intracellular concentrations of K+, Na+, and Cl- were estimated to be 148, 31, and 17 mM respectively.

8. Na+ and K+ moved across the cell membranes at almost precisely the same rate under the conditions of the elution.

Full text

PDF
215

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN J. N. Extracellular space in the central nervous system. AMA Arch Neurol Psychiatry. 1955 Feb;73(2):241–248. doi: 10.1001/archneurpsyc.1955.02330080119021. [DOI] [PubMed] [Google Scholar]
  2. AMES A., 3rd, GURIAN B. S. Measurement of function in an in vitro preparation of mammalian central nervous tissue. J Neurophysiol. 1960 Nov;23:676–691. doi: 10.1152/jn.1960.23.6.676. [DOI] [PubMed] [Google Scholar]
  3. AMES A., 3rd, HASTINGS A. B. Studies on water and electrolytes in nervous tissue. I. Rabbit retina: methods and interpretation of data. J Neurophysiol. 1956 May;19(3):201–212. doi: 10.1152/jn.1956.19.3.201. [DOI] [PubMed] [Google Scholar]
  4. AMES A., 3rd, ISOM J. B., NESBETT F. B. EFFECTS OF OSMOTIC CHANGES ON WATER AND ELECTROLYTES IN NERVOUS TISSUE. J Physiol. 1965 Mar;177:246–262. doi: 10.1113/jphysiol.1965.sp007590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. AMES A., 3rd, NESBETT F. B. A method for multiple electrolyte analyses on small samples of nervous tissue. J Neurochem. 1958 Dec;3(2):116–126. doi: 10.1111/j.1471-4159.1958.tb12617.x. [DOI] [PubMed] [Google Scholar]
  6. AMES A., 3rd, NESBETT F. B. Analysis for potassium, sodium, chloride, and water in a 2-microliter sample of extracellular fluid. Anal Biochem. 1960 Jun;1:1–7. doi: 10.1016/0003-2697(60)90013-0. [DOI] [PubMed] [Google Scholar]
  7. APRISON M. H., LUKENBILL A., SEGAR W. E. Sodium, potassium, chloride and water content of six discrete parts of the mammalian brain. J Neurochem. 1960 Feb;5:150–155. doi: 10.1111/j.1471-4159.1960.tb13348.x. [DOI] [PubMed] [Google Scholar]
  8. BARLOW C. F., DOMEK N. S., GOLDBERG M. A., ROTH L. J. Extracellular brain space measured by S35 sulfate. Arch Neurol. 1961 Jul;5:102–110. doi: 10.1001/archneur.1961.00450130104012. [DOI] [PubMed] [Google Scholar]
  9. BOURKE R. S., GREENBERG E. S., TOWER D. B. VARIATION OF CEREBRAL CORTEX FLUID SPACES IN VIVO AS A FUNCTION OF SPECIES BRAIN SIZE. Am J Physiol. 1965 Apr;208:682–692. doi: 10.1152/ajplegacy.1965.208.4.682. [DOI] [PubMed] [Google Scholar]
  10. BRINLEY F. J., Jr, MULLINS L. J. ION FLUXES AND TRANSFERENCE NUMBER IN SQUID AXONS. J Neurophysiol. 1965 May;28:526–544. doi: 10.1152/jn.1965.28.3.526. [DOI] [PubMed] [Google Scholar]
  11. COOMBS J. S., ECCLES J. C., FATT P. The electrical properties of the motoneurone membrane. J Physiol. 1955 Nov 28;130(2):291–325. doi: 10.1113/jphysiol.1955.sp005411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DAVSON H. A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J Physiol. 1955 Jul 28;129(1):111–133. doi: 10.1113/jphysiol.1955.sp005341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DAVSON H., SPAZIANI E. The blood-brain barrier and the extracellular space of brain. J Physiol. 1959 Dec;149:135–143. doi: 10.1113/jphysiol.1959.sp006330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DOBBING J. THE BLOOD-BRAIN BARRIER: SOME RECENT DEVELOPMENTS. Guys Hosp Rep. 1963;112:267–286. [PubMed] [Google Scholar]
  15. GERSCHENFELD H. M., WALD F., ZADUNAISKY J. A., DE ROBERTIS E. D. Function of astroglia in the water-ion metabolism of the central nervous system: an electron microscope study. Neurology. 1959 Jun;9(6):412–425. doi: 10.1212/wnl.9.6.412. [DOI] [PubMed] [Google Scholar]
  16. HILD W., TASAKI I. Morphological and physiological properties of neurons and glial cells in tissue culture. J Neurophysiol. 1962 Mar;25:277–304. doi: 10.1152/jn.1962.25.2.277. [DOI] [PubMed] [Google Scholar]
  17. KEYNES R. D. CHLORIDE IN THE SQUID GIANT AXON. J Physiol. 1963 Dec;169:690–705. doi: 10.1113/jphysiol.1963.sp007289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KOCH A., RANCK J. B., Jr, NEWMAN B. L. Ionic content of the neuroglia. Exp Neurol. 1962 Sep;6:186–200. doi: 10.1016/0014-4886(62)90002-x. [DOI] [PubMed] [Google Scholar]
  19. KUFFLER S. W., POTTER D. D. GLIA IN THE LEECH CENTRAL NERVOUS SYSTEM: PHYSIOLOGICAL PROPERTIES AND NEURON-GLIA RELATIONSHIP. J Neurophysiol. 1964 Mar;27:290–320. doi: 10.1152/jn.1964.27.2.290. [DOI] [PubMed] [Google Scholar]
  20. LEIBMAN J., GOTCH F. A., EDELMAN I. S. Tritium assay by liquid scintillation spectrometry. Comparison of tritium and deuterium oxides as tracers for body water. Circ Res. 1960 Sep;8:907–912. doi: 10.1161/01.res.8.5.907. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROBERTS N. R., LEINER K. Y., WU M. L., FARR A. L., ALBERS R. W. The quantitative histochemistry of brain. III. Ammon's horn. J Biol Chem. 1954 Mar;207(1):39–49. [PubMed] [Google Scholar]
  22. LOWRY O. H., ROBERTS N. R., LEINER K. Y., WU M. L., FARR A. L. The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem. 1954 Mar;207(1):1–17. [PubMed] [Google Scholar]
  23. LOWRY O. H. The quantitative histochemistry of the brain; histological sampling. J Histochem Cytochem. 1953 Nov;1(6):420–428. doi: 10.1177/1.6.420. [DOI] [PubMed] [Google Scholar]
  24. MAYNARD E. A., SCHULTZ R. L., PEASE D. C. Electron microscopy of the vascular bed of rat cerebral cortex. Am J Anat. 1957 May;100(3):409–433. doi: 10.1002/aja.1001000306. [DOI] [PubMed] [Google Scholar]
  25. MCLENNAN H. The diffusion of potassium, sodium, sucrose and inulin in the extracellular spaces of mammalian tissues. Biochim Biophys Acta. 1957 Apr;24(1):1–8. doi: 10.1016/0006-3002(57)90138-5. [DOI] [PubMed] [Google Scholar]
  26. NICHOLLS J. G., KUFFLER S. W. EXTRACELLULAR SPACE AS A PATHWAY FOR EXCHANGE BETWEEN BLOOD AND NEURONS IN THE CENTRAL NERVOUS SYSTEM OF THE LEECH: IONIC COMPOSITION OF GLIAL CELLS AND NEURONS. J Neurophysiol. 1964 Jul;27:645–671. doi: 10.1152/jn.1964.27.4.645. [DOI] [PubMed] [Google Scholar]
  27. NICHOLLS J. G., KUFFLER S. W. NA AND K CONTENT OF GLIAL CELLS AND NEURONS DETERMINED BY FLAME PHOTOMETRY IN THE CENTRAL NERVOUS SYSTEM OF THE LEECH. J Neurophysiol. 1965 May;28:519–525. doi: 10.1152/jn.1965.28.3.519. [DOI] [PubMed] [Google Scholar]
  28. OCHS S., VAN HARREVELD A. Cerebral impedance changes after circulatory arrest. Am J Physiol. 1956 Sep;187(1):180–192. doi: 10.1152/ajplegacy.1956.187.1.180. [DOI] [PubMed] [Google Scholar]
  29. OGSTON A. G., PHELPS C. F. The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem J. 1961 Apr;78:827–833. doi: 10.1042/bj0780827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. PAGE E. Cat heart muscle in vitro. III. The extracellular space. J Gen Physiol. 1962 Nov;46:201–213. doi: 10.1085/jgp.46.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. PALAY S. L., McGEE-RUSSELL S. M., GORDON S., Jr, GRILLO M. A. Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J Cell Biol. 1962 Feb;12:385–410. doi: 10.1083/jcb.12.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. RANCK J. B., Jr Analysis of specific impedance of rabbit cerebral cortex. Exp Neurol. 1963 Feb;7:153–174. doi: 10.1016/s0014-4886(63)80006-0. [DOI] [PubMed] [Google Scholar]
  33. REED D. J., WOODBURY D. M. KINETICS OF MOVEMENT OF IODIDE, SUCROSE, INULIN AND RADIO-IODINATED SERUM ALBUMIN IN THE CENTRAL NERVOUS SYSTEM AND CEREBROSPINAL FLUID OF THE RAT. J Physiol. 1963 Dec;169:816–850. doi: 10.1113/jphysiol.1963.sp007298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. RICHMOND J. E., HASTINGS A. B. Distribution of sulfate in blood and between cerebrospinal fluid and plasma in vivo. Am J Physiol. 1960 Nov;199:814–820. doi: 10.1152/ajplegacy.1960.199.5.814. [DOI] [PubMed] [Google Scholar]
  35. SJOSTRAND F. S. Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res. 1958 Nov;2(1):122–170. doi: 10.1016/s0022-5320(58)90050-9. [DOI] [PubMed] [Google Scholar]
  36. SMITH M. W. THE IN VITRO ABSORPTION OF WATER AND SOLUTES FROM THE INTESTINE OF GOLDFISH, CARASSIUS AURATUS. J Physiol. 1964 Dec;175:38–49. doi: 10.1113/jphysiol.1964.sp007502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. STREICHER E., RALL D. P., GASKINS J. R. DISTRIBUTION OF THIOCYANATE BETWEEN PLASMA AND CEREBROSPINAL FLUID. Am J Physiol. 1964 Feb;206:251–254. doi: 10.1152/ajplegacy.1964.206.2.251. [DOI] [PubMed] [Google Scholar]
  38. STREICHER E. The thiocyanate space of rat brain in experimental cerebral edema. J Neuropathol Exp Neurol. 1962 Jul;21:437–441. doi: 10.1097/00005072-196207000-00011. [DOI] [PubMed] [Google Scholar]
  39. TREHERNE J. E. The distribution and exchange of some ions and molecules in the central nervous system of Periplaneta americana L. J Exp Biol. 1962 Jun;39:193–217. doi: 10.1242/jeb.39.2.193. [DOI] [PubMed] [Google Scholar]
  40. VANHARREVELD A., CROWELL J., MALHOTRA S. K. A STUDY OF EXTRACELLULAR SPACE IN CENTRAL NERVOUS TISSUE BY FREEZE-SUBSTITUTION. J Cell Biol. 1965 Apr;25:117–137. doi: 10.1083/jcb.25.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zadunaisky J. A., Curran P. F. Sodium fluxes in isolated frog brain. Am J Physiol. 1963 Nov;205(5):949–956. doi: 10.1152/ajplegacy.1963.205.5.949. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES