Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1966 May;184(2):255–271. doi: 10.1113/jphysiol.1966.sp007914

The placental transfer of hexoses and polyols in the guinea-pig, as shown by umbilical perfusion of the placenta

Pauline A Ely
PMCID: PMC1357560  PMID: 5950851

Abstract

1. Experiments involving polyol and sugar transfer across the guineapig placenta have been described.

2. Regarding the former, sorbitol, dulcitol and mannitol are all transferred at approximately the same rate and more slowly than meso-inositol. Erythritol is not transferred.

3. Concerning the hexose transfers, glucose and galactose are transferred at approximately the same rate and more rapidly than fructose.

4. With regard to glucose transfer, there appears to be a mechanism with the following properties: (a) It tends towards saturation under certain conditions. (b) It favours saturation rather than diffusion kinetics for forward flows. (c) It exhibits competition with fructose and with galactose. Glucose/galactose competition has been used to demonstrate uphill transport by counterflow. (d) Competitive inhibition by phlorrhizin or phloretin could not be demonstrated.

Full text

PDF
255

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER D. P., HUGGETT A. S., NIXON D. A., WIDDAS W. F. The placental transfer of sugars in the sheep: the influence of concentration gradient upon the rates of hexose formation as shown in umbilical perfusion of the placenta. J Physiol. 1955 Aug 29;129(2):367–383. doi: 10.1113/jphysiol.1955.sp005360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BATTAGLIA F. C., RANDLE P. J. Regulation of glucose uptake by muscle. 4. The specificity of monosaccharide-transport systems in rat-diaphragm muscle. Biochem J. 1960 May;75:408–416. doi: 10.1042/bj0750408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHINARD F. P., DANESINO V., HARTMANN W. L., HUGGETT A. S., PAUL W., REYNOLDS S. R. The transmission of hexoses across the placenta in the human and the rhesus monkey (Macaca mulatta). J Physiol. 1956 May 28;132(2):289–303. doi: 10.1113/jphysiol.1956.sp005525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FOLKART G. R., DANCIS J., MONEY W. L. Transfer of carbohydrates across guinea pig placenta. Am J Obstet Gynecol. 1960 Aug;80:221–223. doi: 10.1016/0002-9378(60)90116-2. [DOI] [PubMed] [Google Scholar]
  5. GOERKE R. J., McKEAN C. M., MARGOLIS A. J., GLENDENING M. B., PAGE E. W. Studies of the isolated perfused human placenta. I. Methods and organ responses. Am J Obstet Gynecol. 1961 Jun;81:1132–1136. doi: 10.1016/s0002-9378(15)33343-3. [DOI] [PubMed] [Google Scholar]
  6. HAGERMAN D. D., VILLEE C. A. The transport of fructose by human placenta. J Clin Invest. 1952 Oct;31(10):911–913. doi: 10.1172/JCI102679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HUGGETT A. S. G., WARREN F. L., WARREN N. V. The origin of the blood fructose of the foetal sheep. J Physiol. 1951 Apr;113(2-3):258–275. doi: 10.1113/jphysiol.1951.sp004570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUGGETT A. S., NIXON D. A. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet. 1957 Aug 24;273(6991):368–370. doi: 10.1016/s0140-6736(57)92595-3. [DOI] [PubMed] [Google Scholar]
  9. JERVIS E. L., JOHNSON F. R., SHEFF M. F., SMYTH D. H. The effect of phlorhizin on intestinal absorption and intestinal phosphatase. J Physiol. 1956 Dec 28;134(3):675–688. doi: 10.1113/jphysiol.1956.sp005674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KARVONEN M. J., LAAMANEN A., RAIHA N. Lack of effect of oxygen tension upon the permeability of the guinea pig placenta to d(+) xylose and sorbose. Acta Physiol Scand. 1956 May 18;36(3):245–249. doi: 10.1111/j.1748-1716.1956.tb01321.x. [DOI] [PubMed] [Google Scholar]
  11. LEFEVRE P. G., MARSHALL J. K. The atachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport. J Biol Chem. 1959 Nov;234:3022–3026. [PubMed] [Google Scholar]
  12. LeFEVRE P. G., DAVIES R. I. Active transport into the human erythrocyte; evidence from comparative kinetics and competition among monosaccharides. J Gen Physiol. 1951 May;34(5):515–524. doi: 10.1085/jgp.34.5.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MONEY W. L., DANCIS J. Technique for the in situ study of placental transport in the pregnant guinea pig. Am J Obstet Gynecol. 1960 Aug;80:209–214. doi: 10.1016/0002-9378(60)90114-9. [DOI] [PubMed] [Google Scholar]
  14. Nixon D. A. The transplacental passage of fructose, urea and mesoinositol in the direction from foetus to mother, as demonstrated by perfusion studies in the sheep. J Physiol. 1963 May;166(2):351–362.2. doi: 10.1113/jphysiol.1963.sp007108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ROSENBERG T., WILBRANDT W. Uphill transport induced by counterflow. J Gen Physiol. 1957 Nov 20;41(2):289–296. doi: 10.1085/jgp.41.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. VILLEE C. A. Regulation of blood glucose in the human fetus. J Appl Physiol. 1953 Feb;5(8):437–444. doi: 10.1152/jappl.1953.5.8.437. [DOI] [PubMed] [Google Scholar]
  17. WIDDAS W. F. Facilitated transfer of hexoses across the human erythrocyte membrane. J Physiol. 1954 Jul 28;125(1):163–180. doi: 10.1113/jphysiol.1954.sp005148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WIDDAS W. F. Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J Physiol. 1952 Sep;118(1):23–39. doi: 10.1113/jphysiol.1952.sp004770. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES