Abstract
1. The serosal transfer of the following eight amino acids: threonine, alanine, serine, histidine, valine, methionine, phenylalanine and leucine, was measured using everted sacs of anterior intestine taken from goldfish acclimatized to 8° C and incubated at 25° C.
2. All eight amino acids were actively transported and the serosal transfer correlated with the steady potential (P < 0·001) and with the amino acid-evoked potential (P < 0·05) measured on the same preparations.
3. The goldfish rectum actively transported alanine and the steady potential was raised when alanine bathed the mucosa of the everted preparation.
4. L-aspartic acid was partly transaminated to alanine by the goldfish anterior intestine; the rectum transaminated alanine to an unidentified amino acid which might have been serine, asparagine or glutamine or some mixture of these three.
5. It is suggested that L-amino acids increase the ease by which sodium enters the mucosal cell but that it is the rate at which this sodium is transported across the basal membrane which determines the net serosal transfer of amino acids.
Full text
PDF![673](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/ba5a5eff08c8/jphysiol01149-0165.png)
![674](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/453091aa8674/jphysiol01149-0166.png)
![675](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/84000efb9cd3/jphysiol01149-0167.png)
![676](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/3a2132e3d24f/jphysiol01149-0168.png)
![677](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/85c8c96c6e68/jphysiol01149-0169.png)
![678](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/0950295b76ad/jphysiol01149-0170.png)
![679](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/05b5047da7e0/jphysiol01149-0171.png)
![680](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/e4e0760da045/jphysiol01149-0172.png)
![681](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/cef02ca517a4/jphysiol01149-0173.png)
![682](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/5887a082b839/jphysiol01149-0174.png)
![683](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/2e01ee902058/jphysiol01149-0175.png)
![684](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/1357608/835c1515f68c/jphysiol01149-0176.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASANO T. METABOLIC DISTURBANCES AND SHORT-CIRCUIT CURRENT ACROSS INTESTINAL WALL OF RAT. Am J Physiol. 1964 Aug;207:415–422. doi: 10.1152/ajplegacy.1964.207.2.415. [DOI] [PubMed] [Google Scholar]
- BARRY R. J., DIKSTEIN S., MATTHEWS J., SMYTH D. H., WRIGHT E. M. ELECTRICAL POTENTIALS ASSOCIATED WITH INTESTINAL SUGAR TRANSFER. J Physiol. 1964 Jun;171:316–338. doi: 10.1113/jphysiol.1964.sp007379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLARKSON T. W., CROSS A. C., TOOLE S. Dependence on substrate of the electrical potential across the isolated gut. Nature. 1961 Jul 29;191:501–502. doi: 10.1038/191501a0. [DOI] [PubMed] [Google Scholar]
- COHEN G. N., MONOD J. Bacterial permeases. Bacteriol Rev. 1957 Sep;21(3):169–194. doi: 10.1128/br.21.3.169-194.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEMARS R. The inhibition by glutamine of glutamyl transferase formation in cultures of human cells. Biochim Biophys Acta. 1958 Feb;27(2):435–436. doi: 10.1016/0006-3002(58)90367-6. [DOI] [PubMed] [Google Scholar]
- Esposito G., Faelli A., Capraro V. Influence of the transport of amino acids on glucose and sodium transport across the small intestine of the albino rat incubated in vitro. Experientia. 1964 Mar 15;20(3):122–124. doi: 10.1007/BF02150687. [DOI] [PubMed] [Google Scholar]
- Gilles-Baillien M., Schoffeniels E. Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch Int Physiol Biochim. 1965 Mar;73(2):355–357. doi: 10.3109/13813456509084257. [DOI] [PubMed] [Google Scholar]
- Hochachka P. W. Isoenzymes in metabolic adaptation of a poikilotherm: subunit relationships in lactic dehydrogenases of goldfish. Arch Biochem Biophys. 1965 Jul;111(1):96–103. doi: 10.1016/0003-9861(65)90327-9. [DOI] [PubMed] [Google Scholar]
- KANUNGO M. S., PROSSER C. L. Physiological and biochemical adaptation of goldfish to cold and warm temperatures. II. Oxygen consumption of liver homogenate; oxygen consumption and oxidative phosphorylation of liver mitochondria. J Cell Comp Physiol. 1959 Dec;54:265–274. doi: 10.1002/jcp.1030540309. [DOI] [PubMed] [Google Scholar]
- KIDDER G. W., 3rd, CEREIJIDO M., CURRAN P. F. TRANSIENT CHANGES IN ELECTRICAL POTENTIAL DIFFERENCES ACROSS FROG SKIN. Am J Physiol. 1964 Oct;207:935–940. doi: 10.1152/ajplegacy.1964.207.4.935. [DOI] [PubMed] [Google Scholar]
- Lwoff A. The specific effectors of viral development. Biochem J. 1965 Aug;96(2):289–301. doi: 10.1042/bj0960289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAETZ J., GARCIAROMEU F. THE MECHANISM OF SODIUM AND CHLORIDE UPTAKE BY THE GILLS OF A FRESH-WATER FISH, CARASSIUS AURATUS. II. EVIDENCE FOR NH4 ION/NA ION AND HCO3 ION/C1 ION EXCHANGES. J Gen Physiol. 1964 Jul;47:1209–1227. doi: 10.1085/jgp.47.6.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEWEY H., SMYTH D. H. Cellular mechanisms in intestinal transfer of amino acids. J Physiol. 1962 Dec;164:527–551. doi: 10.1113/jphysiol.1962.sp007035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROUT W. R., LIN D. S., HUANG K. C. INTESTINAL TRANSPORT OF AMINO ACIDS AND GLUCOSE IN FLOUNDER FISH. Proc Soc Exp Biol Med. 1965 Apr;118:933–938. doi: 10.3181/00379727-118-30010. [DOI] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. INTERACTIONS BETWEEN ACTIVE SODIUM TRANSPORT AND ACTIVE AMINO-ACID TRANSPORT IN ISOLATED RABBIT ILEUM. Nature. 1965 Jan 16;205:292–294. doi: 10.1038/205292a0. [DOI] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. II. THE INTERACTION BETWEEN ACTIVE SODIUM AND ACTIVE SUGAR TRANSPORT. J Gen Physiol. 1964 Jul;47:1043–1059. doi: 10.1085/jgp.47.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STEIN W. H., MOORE S. The free amino acids of human blood plasma. J Biol Chem. 1954 Dec;211(2):915–926. [PubMed] [Google Scholar]
- Smith M. W. Electrical properties and glucose transfer in the goldfish intestine. Experientia. 1964 Nov 15;20(11):613–614. doi: 10.1007/BF02144815. [DOI] [PubMed] [Google Scholar]
- Smith M. W. Influence of temperature acclimatization on sodium--glucose interactions in the goldfish intestine. J Physiol. 1966 Feb;182(3):574–590. doi: 10.1113/jphysiol.1966.sp007838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WISEMAN G. Absorption of amino-acids using an in vitro technique. J Physiol. 1953 Apr 28;120(1-2):63–72. doi: 10.1113/jphysiol.1953.sp004873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WISEMAN G. Active transport of amino acids by sacs of everted small intestine of the golden hamster (Mesocricetus auratus). J Physiol. 1956 Sep 27;133(3):626–630. doi: 10.1113/jphysiol.1956.sp005614. [DOI] [PMC free article] [PubMed] [Google Scholar]