Full text
PDF![410](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/efc1a1c3df25/jphysiol01161-0191.png)
![411](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/b9da7be0ecfe/jphysiol01161-0192.png)
![412](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/40972a5d5ca1/jphysiol01161-0193.png)
![413](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/39bcb379523d/jphysiol01161-0194.png)
![414](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/fa46a3b3af8b/jphysiol01161-0195.png)
![415](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/5c1478297838/jphysiol01161-0196.png)
![416](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/e36d952780ea/jphysiol01161-0197.png)
![417](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/377e17849a66/jphysiol01161-0198.png)
![418](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/4e7d087acad4/jphysiol01161-0199.png)
![419](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/39ec4bf9cda3/jphysiol01161-0200.png)
![420](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/99b16c9ed377/jphysiol01161-0201.png)
![421](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/3532c2f70f74/jphysiol01161-0202.png)
![422](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/a6d9aa406e1f/jphysiol01161-0203.png)
![423](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/d42f65a475e4/jphysiol01161-0204.png)
![424](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/0e27e21cca81/jphysiol01161-0205.png)
![425](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/f4763e51f61f/jphysiol01161-0206.png)
![426](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/9e43f3399caf/jphysiol01161-0207.png)
![427](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/33ef84ec049c/jphysiol01161-0208.png)
![428](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/238d232869bc/jphysiol01161-0209.png)
![429](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/cbfdf30769a5/jphysiol01161-0210.png)
![430](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/510def487ca0/jphysiol01161-0211.png)
![431](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/1357648/f1e959fcb2b9/jphysiol01161-0212.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASANO T. METABOLIC DISTURBANCES AND SHORT-CIRCUIT CURRENT ACROSS INTESTINAL WALL OF RAT. Am J Physiol. 1964 Aug;207:415–422. doi: 10.1152/ajplegacy.1964.207.2.415. [DOI] [PubMed] [Google Scholar]
- BARRY B. A., MATTHEWS J., SMYTH D. H. Transfer of glucose and fluid by different parts of the small intestine of the rat. J Physiol. 1961 Jul;157:279–288. doi: 10.1113/jphysiol.1961.sp006721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARRY R. J., DIKSTEIN S., MATTHEWS J., SMYTH D. H., WRIGHT E. M. ELECTRICAL POTENTIALS ASSOCIATED WITH INTESTINAL SUGAR TRANSFER. J Physiol. 1964 Jun;171:316–338. doi: 10.1113/jphysiol.1964.sp007379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARRY R. J., SMYTH D. H. Transfer of short-chain fatty acids by the intestine. J Physiol. 1960 Jun;152:48–66. doi: 10.1113/jphysiol.1960.sp006468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRANE R. K. Intestinal absorption of sugars. Physiol Rev. 1960 Oct;40:789–825. doi: 10.1152/physrev.1960.40.4.789. [DOI] [PubMed] [Google Scholar]
- CURRAN P. F. Na, Cl, and water transport by rat ileum in vitro. J Gen Physiol. 1960 Jul;43:1137–1148. doi: 10.1085/jgp.43.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIAMOND J. M. The mechanism of solute transport by the gall-bladder. J Physiol. 1962 May;161:474–502. doi: 10.1113/jphysiol.1962.sp006899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS E. J. EXTERNAL SODIUM CONCENTRATION AND ERYTHROCYTE SODIUM TURNOVER. J Physiol. 1964 Jul;172:61–73. doi: 10.1113/jphysiol.1964.sp007403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEAF A., ANDERSON J., PAGE L. B. Active sodium transport by the isolated toad bladder. J Gen Physiol. 1958 Mar 20;41(4):657–668. doi: 10.1085/jgp.41.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McHARDY G. J., PARSONS D. S. The absorption of water and salt from the small intestine of the rat. Q J Exp Physiol Cogn Med Sci. 1957 Jan;42(1):33–48. doi: 10.1113/expphysiol.1957.sp001241. [DOI] [PubMed] [Google Scholar]
- NEWEY H., SANFORD P. A., SMYTH D. H. URANYL IONS AND INTESTINAL HEXOSE TRANSFER. Nature. 1965 Jan 23;205:389–390. doi: 10.1038/205389a0. [DOI] [PubMed] [Google Scholar]
- NEWEY H., SMYTH D. H. EFFECTS OF SUGARS ON INTESTINAL TRANSFER OF AMINO-ACIDS. Nature. 1964 Apr 25;202:400–401. doi: 10.1038/202400b0. [DOI] [PubMed] [Google Scholar]
- RIKLIS E., QUASTEL J. H. Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol. 1958 Mar;36(3):347–362. [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. II. THE INTERACTION BETWEEN ACTIVE SODIUM AND ACTIVE SUGAR TRANSPORT. J Gen Physiol. 1964 Jul;47:1043–1059. doi: 10.1085/jgp.47.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
- WINDHAGER E. E., GIEBISCH G. Comparison of short-circuit current and net water movement in single perfused proximal tubules of rat kidneys. Nature. 1961 Sep 16;191:1205–1207. doi: 10.1038/1911205a0. [DOI] [PubMed] [Google Scholar]