Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1991 Jan;213(1):26–31. doi: 10.1097/00000658-199101000-00005

Elevated circulating interleukin-6 is associated with an acute-phase response but reduced fixed hepatic protein synthesis in patients with cancer.

K C Fearon 1, D C McMillan 1, T Preston 1, F P Winstanley 1, A M Cruickshank 1, A Shenkin 1
PMCID: PMC1358306  PMID: 1898691

Abstract

It has been suggested that, as part of the inflammatory response to the presence of a tumor, various cytokines are produced and these induce hepatic synthesis of acute-phase proteins (APP). Under these circumstances it is not known what changes occur in the fixed component of hepatic protein synthesis. The aim of this study was to compare circulating interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor (TNF) concentrations and fixed hepatic protein synthesis rates in a group of healthy controls (n = 6) with a group of patients with an established APP response secondary to hepatic metastasis from colorectal cancer (n = 6). Fixed hepatic protein synthesis rates were measured following a primed, constant 20-hour infusion of 15N-glycine. The liver was biopsied at laparotomy. The APP response was assessed by serum C-reactive protein concentration and cytokines were assayed by a combination of immunoassay and bioassay. The patients with advanced cancer and an on-going APP response had elevated circulating IL-6 concentrations (p less than 0.01). Rates of fixed hepatic protein synthesis were 30% lower than those observed in controls (p less than 0.01). These findings demonstrate that in patients with hepatic metastasis, although the synthesis of certain acute-phase export proteins can be increased, fixed protein synthesis is reduced. Whether these changes in the distribution of hepatic protein synthesis are mediated by IL-6 will require further investigation.

Full text

PDF
26

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attaix D., Aurousseau E., Manghebati A., Arnal M. Contribution of liver, skin and skeletal muscle to whole-body protein synthesis in the young lamb. Br J Nutr. 1988 Jul;60(1):77–84. doi: 10.1079/bjn19880078. [DOI] [PubMed] [Google Scholar]
  2. Baumann H., Onorato V., Gauldie J., Jahreis G. P. Distinct sets of acute phase plasma proteins are stimulated by separate human hepatocyte-stimulating factors and monokines in rat hepatoma cells. J Biol Chem. 1987 Jul 15;262(20):9756–9768. [PubMed] [Google Scholar]
  3. Calman K. C. Malignancy. Cancer cachexia. Br J Hosp Med. 1982 Jan;27(1):28-9, 33-4. [PubMed] [Google Scholar]
  4. Cannon J. G., van der Meer J. W., Kwiatkowski D., Endres S., Lonnemann G., Burke J. F., Dinarello C. A. Interleukin-1 beta in human plasma: optimization of blood collection, plasma extraction, and radioimmunoassay methods. Lymphokine Res. 1988 Winter;7(4):457–467. [PubMed] [Google Scholar]
  5. Coulie P. G., Cayphas S., Vink A., Uyttenhove C., Van Snick J. Interleukin-HP1-related hybridoma and plasmacytoma growth factors induced by lipopolysaccharide in vivo. Eur J Immunol. 1987 Aug;17(8):1217–1220. doi: 10.1002/eji.1830170821. [DOI] [PubMed] [Google Scholar]
  6. Cryer D. R., Matsushima T., Marsh J. B., Yudkoff M., Coates P. M., Cortner J. A. Direct measurement of apolipoprotein B synthesis in human very low density lipoprotein using stable isotopes and mass spectrometry. J Lipid Res. 1986 May;27(5):508–516. [PubMed] [Google Scholar]
  7. Edén E., Ekman L., Bennegård K., Lindmark L., Lundholm K. Whole-body tyrosine flux in relation to energy expenditure in weight-losing cancer patients. Metabolism. 1984 Nov;33(11):1020–1027. doi: 10.1016/0026-0495(84)90231-2. [DOI] [PubMed] [Google Scholar]
  8. Emery P. W., Edwards R. H., Rennie M. J., Souhami R. L., Halliday D. Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br Med J (Clin Res Ed) 1984 Sep 8;289(6445):584–586. doi: 10.1136/bmj.289.6445.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Emery P. W., Lovell L., Rennie M. J. Protein synthesis measured in vivo in muscle and liver of cachectic tumor-bearing mice. Cancer Res. 1984 Jul;44(7):2779–2784. [PubMed] [Google Scholar]
  10. FLECK A., MUNRO H. N. THE DETERMINATION OF ORGANIC NITROGEN IN BIOLOGICAL MATERIALS. A REVIEW. Clin Chim Acta. 1965 Jan;11:2–12. doi: 10.1016/0009-8981(65)90083-5. [DOI] [PubMed] [Google Scholar]
  11. Fearon K. C., Carter D. C. Cancer cachexia. Ann Surg. 1988 Jul;208(1):1–5. doi: 10.1097/00000658-198807000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fearon K. C., Hansell D. T., Preston T., Plumb J. A., Davies J., Shapiro D., Shenkin A., Calman K. C., Burns H. J. Influence of whole body protein turnover rate on resting energy expenditure in patients with cancer. Cancer Res. 1988 May 1;48(9):2590–2595. [PubMed] [Google Scholar]
  13. Garlick P. J., McNurlan M. A., Preedy V. R. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J. 1980 Nov 15;192(2):719–723. doi: 10.1042/bj1920719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gauldie J., Richards C., Harnish D., Lansdorp P., Baumann H. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7251–7255. doi: 10.1073/pnas.84.20.7251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gauldie J., Sauder D. N., McAdam K. P., Dinarello C. A. Purified interleukin-1 (IL-1) from human monocytes stimulates acute-phase protein synthesis by rodent hepatocytes in vitro. Immunology. 1987 Feb;60(2):203–207. [PMC free article] [PubMed] [Google Scholar]
  16. Geiger T., Andus T., Klapproth J., Hirano T., Kishimoto T., Heinrich P. C. Induction of rat acute-phase proteins by interleukin 6 in vivo. Eur J Immunol. 1988 May;18(5):717–721. doi: 10.1002/eji.1830180510. [DOI] [PubMed] [Google Scholar]
  17. Heymsfield S. B., McManus C. B. Tissue components of weight loss in cancer patients. A new method of study and preliminary observations. Cancer. 1985 Jan 1;55(1 Suppl):238–249. doi: 10.1002/1097-0142(19850101)55:1+<238::aid-cncr2820551306>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  18. Inagaki J., Rodriguez V., Bodey G. P. Proceedings: Causes of death in cancer patients. Cancer. 1974 Feb;33(2):568–573. doi: 10.1002/1097-0142(197402)33:2<568::aid-cncr2820330236>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  19. Inculet R. I., Stein T. P., Peacock J. L., Leskiw M., Maher M., Gorschboth C. M., Norton J. A. Altered leucine metabolism in noncachectic sarcoma patients. Cancer Res. 1987 Sep 1;47(17):4746–4749. [PubMed] [Google Scholar]
  20. Jablons D. M., McIntosh J. K., Mulé J. J., Nordan R. P., Rudikoff S., Lotze M. T. Induction of interferon-beta 2/interleukin-6 (IL-6) by cytokine administration and detection of circulating interleukin-6 in the tumor-bearing state. Ann N Y Acad Sci. 1989;557:157–161. doi: 10.1111/j.1749-6632.1989.tb24008.x. [DOI] [PubMed] [Google Scholar]
  21. Jeevanandam M., Horowitz G. D., Lowry S. F., Brennan M. F. Cancer cachexia and protein metabolism. Lancet. 1984 Jun 30;1(8392):1423–1426. doi: 10.1016/s0140-6736(84)91929-9. [DOI] [PubMed] [Google Scholar]
  22. Kern K. A., Norton J. A. Cancer cachexia. JPEN J Parenter Enteral Nutr. 1988 May-Jun;12(3):286–298. doi: 10.1177/0148607188012003286. [DOI] [PubMed] [Google Scholar]
  23. Lundholm K., Edström S., Ekman L., Karlberg I., Bylund A. C., Scherstén T. A comparative study of the influence of malignant tumor on host metabolism in mice and man: evaluation of an experimental model. Cancer. 1978 Aug;42(2):453–461. doi: 10.1002/1097-0142(197808)42:2<453::aid-cncr2820420212>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  24. Pain V. M., Randall D. P., Garlick P. J. Protein synthesis in liver and skeletal muscle of mice bearing an ascites tumor. Cancer Res. 1984 Mar;44(3):1054–1057. [PubMed] [Google Scholar]
  25. Pepys M. B., Baltz M. L. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol. 1983;34:141–212. doi: 10.1016/s0065-2776(08)60379-x. [DOI] [PubMed] [Google Scholar]
  26. Picou D., Taylor-Roberts T. The measurement of total protein synthesis and catabolism and nitrogen turnover in infants in different nutritional states and receiving different amounts of dietary protein. Clin Sci. 1969 Apr;36(2):283–296. [PubMed] [Google Scholar]
  27. Preston T., McMillan D. C. Rapid sample throughput for biomedical stable isotope tracer studies. Biomed Environ Mass Spectrom. 1988 Oct;16(1-12):229–235. doi: 10.1002/bms.1200160142. [DOI] [PubMed] [Google Scholar]
  28. Raynes J. G., Cooper E. H. Comparison of serum amyloid A protein and C-reactive protein concentrations in cancer and non-malignant disease. J Clin Pathol. 1983 Jul;36(7):798–803. doi: 10.1136/jcp.36.7.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Read W. W., Harrison R. A., Halliday D. A resin-based method for the preparation of molecular nitrogen for 15N analysis from urinary and plasma components. Anal Biochem. 1982 Jul 1;123(2):249–254. doi: 10.1016/0003-2697(82)90442-0. [DOI] [PubMed] [Google Scholar]
  30. Selby P., Hobbs S., Viner C., Jackson E., Jones A., Newell D., Calvert A. H., McElwain T., Fearon K., Humphreys J. Tumour necrosis factor in man: clinical and biological observations. Br J Cancer. 1987 Dec;56(6):803–808. doi: 10.1038/bjc.1987.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stovroff M. C., Fraker D. L., Norton J. A. Cachectin activity in the serum of cachectic, tumor-bearing rats. Arch Surg. 1989 Jan;124(1):94–99. doi: 10.1001/archsurg.1989.01410010104021. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES