Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1991 May;213(5):427–432. doi: 10.1097/00000658-199105000-00007

The influence of severity of spinal cord ischemia in the etiology of delayed-onset paraplegia.

W M Moore Jr 1, L H Hollier 1
PMCID: PMC1358465  PMID: 2025062

Abstract

To clarify the cause of delayed-onset paraplegia, the authors evaluated the neurologic outcome after temporary (10 to 30 minutes) spinal cord ischemia in the awake rabbit. Loss of motor function occurred in less than 2 minutes in all animals. Restoration of flow within 16 minutes always resulted in full return of function, whereas with occlusion times of greater than 27 minutes all animals remained paralyzed. After temporary occlusion of 20 to 21 minutes, however, 71% of animals returned to normal neurologic function but developed delayed-onset paraplegia 14 to 48 hours later. This appears to be a reliable method for the creation of a model of delayed-onset paraplegia in the awake animal, and will facilitate more detailed studies of the pathophysiology of ischemia-induced paraplegia.

Full text

PDF
427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bower T. C., Murray M. J., Gloviczki P., Yaksh T. L., Hollier L. H., Pairolero P. C. Effects of thoracic aortic occlusion and cerebrospinal fluid drainage on regional spinal cord blood flow in dogs: correlation with neurologic outcome. J Vasc Surg. 1989 Jan;9(1):135–144. [PubMed] [Google Scholar]
  2. Chen S. T., Hsu C. Y., Hogan E. L., Halushka P. V., Linet O. I., Yatsu F. M. Thromboxane, prostacyclin, and leukotrienes in cerebral ischemia. Neurology. 1986 Apr;36(4):466–470. doi: 10.1212/wnl.36.4.466. [DOI] [PubMed] [Google Scholar]
  3. Cheng M. K., Robertson C., Grossman R. G., Foltz R., Williams V. Neurological outcome correlated with spinal evoked potentials in a spinal cord ischemia model. J Neurosurg. 1984 Apr;60(4):786–795. doi: 10.3171/jns.1984.60.4.0786. [DOI] [PubMed] [Google Scholar]
  4. Crawford E. S., Crawford J. L., Safi H. J., Coselli J. S., Hess K. R., Brooks B., Norton H. J., Glaeser D. H. Thoracoabdominal aortic aneurysms: preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg. 1986 Mar;3(3):389–404. doi: 10.1067/mva.1986.avs0030389. [DOI] [PubMed] [Google Scholar]
  5. Crawford E. S., Svensson L. G., Hess K. R., Shenaq S. S., Coselli J. S., Safi H. J., Mohindra P. K., Rivera V. A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta. J Vasc Surg. 1991 Jan;13(1):36–46. [PubMed] [Google Scholar]
  6. Giulian D. Ameboid microglia as effectors of inflammation in the central nervous system. J Neurosci Res. 1987;18(1):155-71, 132-3. doi: 10.1002/jnr.490180123. [DOI] [PubMed] [Google Scholar]
  7. Hollier L. H. Protecting the brain and spinal cord. J Vasc Surg. 1987 Mar;5(3):524–528. doi: 10.1067/mva.1987.avs0050524. [DOI] [PubMed] [Google Scholar]
  8. Jacobs T. P., Shohami E., Baze W., Burgard E., Gunderson C., Hallenbeck J. M., Feuerstein G. Deteriorating stroke model: histopathology, edema, and eicosanoid changes following spinal cord ischemia in rabbits. Stroke. 1987 Jul-Aug;18(4):741–750. doi: 10.1161/01.str.18.4.741. [DOI] [PubMed] [Google Scholar]
  9. Norris D. A., Weston W. L., Sams W. M., Jr The effect of immunosuppressive and anti-inflammatory drugs on monocyte function in vitro. J Lab Clin Med. 1977 Sep;90(3):569–580. [PubMed] [Google Scholar]
  10. North R. J. The concept of the activated macrophage. J Immunol. 1978 Sep;121(3):806–809. [PMC free article] [PubMed] [Google Scholar]
  11. Robertson C. S., Foltz R., Grossman R. G., Goodman J. C. Protection against experimental ischemic spinal cord injury. J Neurosurg. 1986 Apr;64(4):633–642. doi: 10.3171/jns.1986.64.4.0633. [DOI] [PubMed] [Google Scholar]
  12. Zivin J. A., DeGirolami U., Hurwitz E. L. Spectrum of neurological deficits in experimental CNS ischemia. A quantitative study. Arch Neurol. 1982 Jul;39(7):408–412. doi: 10.1001/archneur.1982.00510190026008. [DOI] [PubMed] [Google Scholar]
  13. Zivin J. A., DeGirolami U. Spinal cord infarction: a highly reproducible stroke model. Stroke. 1980 Mar-Apr;11(2):200–202. doi: 10.1161/01.str.11.2.200. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES