Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1991 Aug;214(2):181–186. doi: 10.1097/00000658-199108000-00013

Interleukin-2 induces early multisystem organ edema mediated by neutrophils.

R Welbourn 1, G Goldman 1, L Kobzik 1, I Paterson 1, D Shepro 1, H B Hechtman 1
PMCID: PMC1358518  PMID: 1867524

Abstract

Interleukin-2 (IL-2), an agent known to activate neutrophils (PMN) with thromboxane (Tx)B2 release, produces pulmonary edema within 6 hours of intravenous infusion. This study tests the role of PMN in mediating the edema. Anesthetized rats received 10(6)U recombinant human IL-2 (n = 15) or vehicle (n = 14) as a constant intravenous infusion during a period of 1 hour. At this time there was leukopenia 3.63 +/- 0.43 (x10(3)/mm3) relative to vehicle-infused control rats 6.12 +/- 0.86 and a decline in PMN, 2.19 +/- 0.14 relative to control value of 3.33 +/- 0.05 (both p less than 0.05). After 6 hours edema, as measured by increase in the wet to dry weight (W/d) ratio, was present in the lungs (4.93 +/- 0.20 relative to control 4.06 +/- 0.10), heart (4.09 +/- 0.11 versus 3.76 +/- 0.08), liver (3.50 +/- 0.10 versus 3.18 +/- 0.10), and kidney (4.25 +/- 0.07 versus 4.00 +/- 0.07) (all p less than 0.05). There was increased lung permeability demonstrated by bronchoalveolar lavage fluid protein concentration of 1970 +/- 210 micrograms/mL relative to control 460 +/- 90 micrograms/mL (p less than 0.05). Interleukin-2 resulted in lung PMN sequestration of 53 +/- 7 PMN/10 high-power fields (HPF) relative to 23 +/- 2 PMN/10 HPF in controls (p less than 0.05) and increased plasma TxB2 levels to 1290 +/- 245 pg/mL relative to control 481 +/- 93 pg/mL (p less than 0.05). Pretreatment of other rats (n = 8) with selective anti-rat neutrophil antiserum 18 hours before the experiment led to a peripheral PMN count 10% of baseline and prevented edema in the lungs (W/d ratio 4.20 +/- 0.16) and heart (3.67 +/- 0.07) (both p less than 0.05) but not liver or kidney. Protein in lung lavage was reduced to 760 +/- 220 micrograms/mL (p less than 0.05). The protection afforded by leukopenia was associated with lack of PMN sequestration and prevention of the increase in plasma Tx levels (484 +/- 120 pg/mL, p less than 0.05). These data indicate that the rapid induction of lung and heart edema with a 1-hour infusion of IL-2 in the rat is mediated, in large part, by activated PMNs.

Full text

PDF
181

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson T. D., Hayes T. J., Gately M. K., Bontempo J. M., Stern L. L., Truitt G. A. Toxicity of human recombinant interleukin-2 in the mouse is mediated by interleukin-activated lymphocytes. Separation of efficacy and toxicity by selective lymphocyte subset depletion. Lab Invest. 1988 Nov;59(5):598–612. [PubMed] [Google Scholar]
  2. Anderson T. D., Hayes T. J. Toxicity of human recombinant interleukin-2 in rats. Pathologic changes are characterized by marked lymphocytic and eosinophilic proliferation and multisystem involvement. Lab Invest. 1989 Mar;60(3):331–346. [PubMed] [Google Scholar]
  3. Arnaout M. A., Hakim R. M., Todd R. F., 3rd, Dana N., Colten H. R. Increased expression of an adhesion-promoting surface glycoprotein in the granulocytopenia of hemodialysis. N Engl J Med. 1985 Feb 21;312(8):457–462. doi: 10.1056/NEJM198502213120801. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Damle N. K., Doyle L. V., Bender J. R., Bradley E. C. Interleukin 2-activated human lymphocytes exhibit enhanced adhesion to normal vascular endothelial cells and cause their lysis. J Immunol. 1987 Mar 15;138(6):1779–1785. [PubMed] [Google Scholar]
  6. Damle N. K., Doyle L. V. IL-2-activated human killer lymphocytes but not their secreted products mediate increase in albumin flux across cultured endothelial monolayers. Implications for vascular leak syndrome. J Immunol. 1989 Apr 15;142(8):2660–2669. [PubMed] [Google Scholar]
  7. Dinarello C. A., Cannon J. G., Wolff S. M., Bernheim H. A., Beutler B., Cerami A., Figari I. S., Palladino M. A., Jr, O'Connor J. V. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med. 1986 Jun 1;163(6):1433–1450. doi: 10.1084/jem.163.6.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ettinghausen S. E., Moore J. G., White D. E., Platanias L., Young N. S., Rosenberg S. A. Hematologic effects of immunotherapy with lymphokine-activated killer cells and recombinant interleukin-2 in cancer patients. Blood. 1987 Jun;69(6):1654–1660. [PubMed] [Google Scholar]
  9. Ettinghausen S. E., Puri R. K., Rosenberg S. A. Increased vascular permeability in organs mediated by the systemic administration of lymphokine-activated killer cells and recombinant interleukin-2 in mice. J Natl Cancer Inst. 1988 Apr 6;80(3):177–188. doi: 10.1093/jnci/80.3.177. [DOI] [PubMed] [Google Scholar]
  10. Ferro T. J., Johnson A., Everitt J., Malik A. B. IL-2 induces pulmonary edema and vasoconstriction independent of circulating lymphocytes. J Immunol. 1989 Mar 15;142(6):1916–1921. [PubMed] [Google Scholar]
  11. Fraker D. L., Langstein H. N., Norton J. A. Passive immunization against tumor necrosis factor partially abrogates interleukin 2 toxicity. J Exp Med. 1989 Sep 1;170(3):1015–1020. doi: 10.1084/jem.170.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frasier-Scott K., Hatzakis H., Seong D., Jones C. M., Wu K. K. Influence of natural and recombinant interleukin 2 on endothelial cell arachidonate metabolism. Induction of de novo synthesis of prostaglandin H synthase. J Clin Invest. 1988 Dec;82(6):1877–1883. doi: 10.1172/JCI113805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gamble J. R., Harlan J. M., Klebanoff S. J., Vadas M. A. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8667–8671. doi: 10.1073/pnas.82.24.8667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glauser F. L., DeBlois G. G., Bechard D. E., Merchant R. E., Grant A. J., Fowler A. A., Fairman R. P. A comparison of the cardiopulmonary effects of continuous versus bolus infusion of recombinant interleukin-2 in sheep. Cancer Res. 1988 Apr 15;48(8):2221–2225. [PubMed] [Google Scholar]
  15. Glauser F. L., DeBlois G. G., Bechard D. E., Merchant R. E., Grant A. J., Fowler A. A., Fairman R. P. Cardiopulmonary effects of recombinant interleukin-2 infusion in sheep. J Appl Physiol (1985) 1988 Mar;64(3):1030–1037. doi: 10.1152/jappl.1988.64.3.1030. [DOI] [PubMed] [Google Scholar]
  16. Goldman G., Welbourn R., Klausner J. M., Paterson I. S., Kobzik L., Valeri C. R., Shepro D., Hechtman H. B. Ischemia activates neutrophils but inhibits their local and remote diapedesis. Ann Surg. 1990 Feb;211(2):196–201. doi: 10.1097/00000658-199002000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harlan J. M. Leukocyte-endothelial interactions. Blood. 1985 Mar;65(3):513–525. [PubMed] [Google Scholar]
  18. Harlan J. M. Neutrophil-mediated vascular injury. Acta Med Scand Suppl. 1987;715:123–129. doi: 10.1111/j.0954-6820.1987.tb09912.x. [DOI] [PubMed] [Google Scholar]
  19. Harms B. A., Pahl A. C., Pohlman T. H., Conhaim R. L., Starling J. R., Storm F. K. Effects of interleukin-2 on pulmonary and systemic transvascular fluid filtration. Surgery. 1989 Aug;106(2):339–346. [PubMed] [Google Scholar]
  20. Heflin A. C., Jr, Brigham K. L. Prevention by granulocyte depletion of increased vascular permeability of sheep lung following endotoxemia. J Clin Invest. 1981 Nov;68(5):1253–1260. doi: 10.1172/JCI110371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heslop H. E., Gottlieb D. J., Bianchi A. C., Meager A., Prentice H. G., Mehta A. B., Hoffbrand A. V., Brenner M. K. In vivo induction of gamma interferon and tumor necrosis factor by interleukin-2 infusion following intensive chemotherapy or autologous marrow transplantation. Blood. 1989 Sep;74(4):1374–1380. [PubMed] [Google Scholar]
  22. Klausner J. M., Anner H., Paterson I. S., Kobzik L., Valeri C. R., Shepro D., Hechtman H. B. Lower torso ischemia-induced lung injury is leukocyte dependent. Ann Surg. 1988 Dec;208(6):761–767. doi: 10.1097/00000658-198812000-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klausner J. M., Kobzik L., Valeri C. R., Shepro D., Hechtman H. B. Selective lung leukosequestration after complement activation. J Appl Physiol (1985) 1988 Jul;65(1):80–88. doi: 10.1152/jappl.1988.65.1.80. [DOI] [PubMed] [Google Scholar]
  24. Klausner J. M., Morel N., Paterson I. S., Kobzik L., Valeri C. R., Eberlein T. J., Shepro D., Hechtman H. B. The rapid induction by interleukin-2 of pulmonary microvascular permeability. Ann Surg. 1989 Jan;209(1):119–128. doi: 10.1097/00000658-198901000-00017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Klausner J. M., Paterson I. S., Kobzik L., Rodzen C., Valeri C. R., Shepro D., Hechtman H. B. Vasodilating prostaglandins attenuate ischemic renal injury only if thromboxane is inhibited. Ann Surg. 1989 Feb;209(2):219–224. doi: 10.1097/00000658-198902000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klausner J. M., Paterson I. S., Morel N. M., Goldman G., Gray A. D., Valeri R., Eberlein T. J., Shepro D., Hechtman H. B. Role of thromboxane in interleukin 2-induced lung injury in sheep. Cancer Res. 1989 Jul 1;49(13):3542–3549. [PubMed] [Google Scholar]
  27. Klausner J. M., Paterson I. S., Valeri C. R., Shepro D., Hechtman H. B. Limb ischemia-induced increase in permeability is mediated by leukocytes and leukotrienes. Ann Surg. 1988 Dec;208(6):755–760. doi: 10.1097/00000658-198812000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Levine L., Alam I., Langone J. J. The use of immobilized ligands and [125I]protein a for immunoassays of thromboxane B2, prostaglandin D2, 13,14-dihydro-prostaglandin E2, 5,6-dihydro-prostaglandin I2, 6-keto-prostaglandin F1 alpha, 15-hydroxy-9 alpha, 11 alpha(epoxymethano)prosta-5,13-dienoic acid and 15-hydroxy-11 alpha,9 alpha(epoxymethano)prosta-5,13-dienoic acid. Prostaglandins Med. 1979 Mar;2(3):177–189. doi: 10.1016/0161-4630(79)90035-1. [DOI] [PubMed] [Google Scholar]
  29. Lotze M. T., Matory Y. L., Rayner A. A., Ettinghausen S. E., Vetto J. T., Seipp C. A., Rosenberg S. A. Clinical effects and toxicity of interleukin-2 in patients with cancer. Cancer. 1986 Dec 15;58(12):2764–2772. doi: 10.1002/1097-0142(19861215)58:12<2764::aid-cncr2820581235>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  30. Michie H. R., Eberlein T. J., Spriggs D. R., Manogue K. R., Cerami A., Wilmore D. W. Interleukin-2 initiates metabolic responses associated with critical illness in humans. Ann Surg. 1988 Oct;208(4):493–503. doi: 10.1097/00000658-198810000-00011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mier J. W., Vachino G., van der Meer J. W., Numerof R. P., Adams S., Cannon J. G., Bernheim H. A., Atkins M. B., Parkinson D. R., Dinarello C. A. Induction of circulating tumor necrosis factor (TNF alpha) as the mechanism for the febrile response to interleukin-2 (IL-2) in cancer patients. J Clin Immunol. 1988 Nov;8(6):426–436. doi: 10.1007/BF00916947. [DOI] [PubMed] [Google Scholar]
  32. Nathan C., Srimal S., Farber C., Sanchez E., Kabbash L., Asch A., Gailit J., Wright S. D. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol. 1989 Sep;109(3):1341–1349. doi: 10.1083/jcb.109.3.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nawroth P. P., Bank I., Handley D., Cassimeris J., Chess L., Stern D. Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J Exp Med. 1986 Jun 1;163(6):1363–1375. doi: 10.1084/jem.163.6.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nedwin G. E., Svedersky L. P., Bringman T. S., Palladino M. A., Jr, Goeddel D. V. Effect of interleukin 2, interferon-gamma, and mitogens on the production of tumor necrosis factors alpha and beta. J Immunol. 1985 Oct;135(4):2492–2497. [PubMed] [Google Scholar]
  35. Paterson I. S., Klausner J. M., Goldman G., Kobzik L., Welbourn R., Valeri C. R., Shepro D., Hechtman H. B. Thromboxane mediates the ischemia-induced neutrophil oxidative burst. Surgery. 1989 Aug;106(2):224–229. [PubMed] [Google Scholar]
  36. Pober J. S., Gimbrone M. A., Jr, Lapierre L. A., Mendrick D. L., Fiers W., Rothlein R., Springer T. A. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol. 1986 Sep 15;137(6):1893–1896. [PubMed] [Google Scholar]
  37. Romson J. L., Hook B. G., Kunkel S. L., Abrams G. D., Schork M. A., Lucchesi B. R. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation. 1983 May;67(5):1016–1023. doi: 10.1161/01.cir.67.5.1016. [DOI] [PubMed] [Google Scholar]
  38. Rosenstein M., Ettinghausen S. E., Rosenberg S. A. Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin 2. J Immunol. 1986 Sep 1;137(5):1735–1742. [PubMed] [Google Scholar]
  39. Schmid-Schönbein G. W. Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Fed Proc. 1987 May 15;46(7):2397–2401. [PubMed] [Google Scholar]
  40. Simpson P. J., Todd R. F., 3rd, Fantone J. C., Mickelson J. K., Griffin J. D., Lucchesi B. R. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest. 1988 Feb;81(2):624–629. doi: 10.1172/JCI113364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith C. W., Rothlein R., Hughes B. J., Mariscalco M. M., Rudloff H. E., Schmalstieg F. C., Anderson D. C. Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendothelial migration. J Clin Invest. 1988 Nov;82(5):1746–1756. doi: 10.1172/JCI113788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Till G. O., Johnson K. J., Kunkel R., Ward P. A. Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites. J Clin Invest. 1982 May;69(5):1126–1135. doi: 10.1172/JCI110548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Utsunomiya T., Krausz M. M., Dunham B., Valeri C. R., Levine L., Shepro D., Hechtman H. B. Modification of inflammatory response to aspiration with ibuprofen. Am J Physiol. 1982 Dec;243(6):H903–H910. doi: 10.1152/ajpheart.1982.243.6.H903. [DOI] [PubMed] [Google Scholar]
  44. Vedder N. B., Winn R. K., Rice C. L., Chi E. Y., Arfors K. E., Harlan J. M. A monoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J Clin Invest. 1988 Mar;81(3):939–944. doi: 10.1172/JCI113407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES