Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BANDURSKI R. S., AXELROD B. The chromatographic identification of some biologically important phosphate esters. J Biol Chem. 1951 Nov;193(1):405–410. [PubMed] [Google Scholar]
- BARTLETT G. R., SAVAGE E., HUGHES L., MARLOW A. A. Carbohydrate intermediates and related cofactors in the human erythrocyte. J Appl Physiol. 1953 Jul;6(1):51–56. doi: 10.1152/jappl.1953.6.1.51. [DOI] [PubMed] [Google Scholar]
- BERNSTEIN R. E. Rates of glycolysis in human red cells in relation to energy requirements for cation transport. Nature. 1953 Nov 14;172(4385):911–912. doi: 10.1038/172911a0. [DOI] [PubMed] [Google Scholar]
- Berenblum I., Chain E. An improved method for the colorimetric determination of phosphate. Biochem J. 1938 Feb;32(2):295–298. doi: 10.1042/bj0320295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CALDWELL P. C., KEYNES R. D. The utilization of phosphate bond energy for sodium extrusion from giant axons. J Physiol. 1957 Jun 18;137(1):12–3P. [PubMed] [Google Scholar]
- EGGLESTON L. V., HEMS R. Separation of adenosine phosphates by paper chromotography and the equilibrium constant of the myokinase system. Biochem J. 1952 Sep;52(1):156–160. doi: 10.1042/bj0520156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FLECKENSTEIN A., GERLACH E. Papierchromatographische Trennung von Adenosintriphosphat, Adenosindiphosphat un anderen Phosphorverbindungen bei Säugetier- und Tauben-Erythrocyten verschiedenen K+-Gehalts; Studien über Blutgifte. I. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1953;219(6):531–548. [PubMed] [Google Scholar]
- Farmer S. N., Maizels M. Organic anions of human erythrocytes. Biochem J. 1939 Feb;33(2):280–289. doi: 10.1042/bj0330280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GERLACH E. Einfluss von Stoffwechselgiften auf die Phosphorsäure-Ester und den 32PO4-Turnover in Menschen- und Tauben-Erythrocyten. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1956;228(1-2):128–130. [PubMed] [Google Scholar]
- GERLACH E., WEBER E., DORING H. J. Einige neue Lösungsmittel für die Papierchromatographie von Phosphorsäure-Estern. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1955;226(1):9–17. [PubMed] [Google Scholar]
- GILLESPIE R. J., MAW G. A., VERNON C. A. The concept of phosphate bond-energy. Nature. 1953 Jun 27;171(4365):1147–1149. doi: 10.1038/1711147a0. [DOI] [PubMed] [Google Scholar]
- GILL T. J., 3rd, GOLD G. L., SOLOMON A. K. The kinetics of cardiac glycoside inhibition of potassium transport in human erythrocytes. J Gen Physiol. 1956 Nov 20;40(2):327–350. doi: 10.1085/jgp.40.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLYNN I. M. Action of cardiac glycosides on red cells. J Physiol. 1955 May 27;128(2):56–7P. [PubMed] [Google Scholar]
- GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOURLEY D. R. H. The role of adenosine triphosphate in the transport of phosphate in the human erythrocyte. Arch Biochem Biophys. 1952 Sep;40(1):1–12. doi: 10.1016/0003-9861(52)90066-0. [DOI] [PubMed] [Google Scholar]
- HANES C. S., ISHERWOOD F. A. Separation of the phosphoric esters on the filter paper chromatogram. Nature. 1949 Dec 31;164(4183):1107-12, illust. doi: 10.1038/1641107a0. [DOI] [PubMed] [Google Scholar]
- JACKSON D. M., NUTT M. E. Intercellular plasma and its effect on absolute red cell volume determination. J Physiol. 1951 Oct 29;115(2):196–205. doi: 10.1113/jphysiol.1951.sp004664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JORGENSEN S., OVERGAARD-HANSEN K., PRAETORIUS E. Rephosphorylation produced by inosine and adenosine of adenosine monophosphate and adenosine diphosphate in human erythrocytes. Nature. 1957 Jan 19;179(4551):152–153. doi: 10.1038/179152a0. [DOI] [PubMed] [Google Scholar]
- JOYCE C. R., WEATHERALL M. Cardiac glycosides and the potassium exchange of human erythrocytes. J Physiol. 1955 Feb 28;127(2):33P–33P. [PubMed] [Google Scholar]
- KAHN J. B., Jr, ACHESON G. H. Effects of cardiac glyosides and other lactones, and of certain other compounds, on cation transfer in human erythrocytes. J Pharmacol Exp Ther. 1955 Nov;115(3):305–318. [PubMed] [Google Scholar]
- KREBS H. A. Body size and tissue respiration. Biochim Biophys Acta. 1950 Jan;4(1-3):249–269. doi: 10.1016/0006-3002(50)90032-1. [DOI] [PubMed] [Google Scholar]
- MAIZELS M. Factors in the active transport of cations. J Physiol. 1951 Jan;112(1-2):59–83. doi: 10.1113/jphysiol.1951.sp004509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARKHAM R., SMITH J. D. Chromatographic studies of nucleic acids; a technique for the identification and estimation of purine and pyrimidine bases, nucleosides and related substances. Biochem J. 1949;45(3):294–298. doi: 10.1042/bj0450294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maizels M. Cation control in human erythrocytes. J Physiol. 1949 May 15;108(3):247–263. [PMC free article] [PubMed] [Google Scholar]
- PAPPIUS H. M., DENSTEDT O. F. Studies on the preservation of blood. II. The glycolytic behavior of blood during storage. Can J Biochem Physiol. 1954 May;32(3):293–305. [PubMed] [Google Scholar]
- PONDER E. Accumulation of potassium by human red cells. J Gen Physiol. 1950 Jul 20;33(6):745–757. doi: 10.1085/jgp.33.6.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PRANKERD T. A., ALTMAN K. I. A study of the metabolism of phosphorus in mammalian red cells. Biochem J. 1954 Dec;58(4):622–633. doi: 10.1042/bj0580622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PRANKERD T. A. Chemical changes in stored blood, with observations on the effects of adenosine. Biochem J. 1956 Oct;64(2):209–213. doi: 10.1042/bj0640209a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PRANKERD T. A. The metabolism of the human erythrocyte: a review. Br J Haematol. 1955 Apr;1(2):131–145. doi: 10.1111/j.1365-2141.1955.tb05495.x. [DOI] [PubMed] [Google Scholar]
- RAPOPORT S., LUEBERING J. Glycerate-2,3-diphosphatase. J Biol Chem. 1951 Apr;189(2):683–694. [PubMed] [Google Scholar]
- ROHDEWALD M., WEBER M. Uber den papierchromatographisch ermittelten Gehalt von Phosphor-Verbindungen in der säurelöslichen Fraktion des menschlichen Blutes. Hoppe Seylers Z Physiol Chem. 1956 Dec 10;306(2-3):90–95. [PubMed] [Google Scholar]
- SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
- SOLVONUK P. F., COLLIER H. B. The pyruvic phosphoferase of erythrocytes. I. Properties of the enzyme and its activity in erythrocytes of various species. Can J Biochem Physiol. 1955 Jan;33(1):38–45. [PubMed] [Google Scholar]
- TAYLOR I. M., WELLER J. M., HASTINGS A. B. Effect of cholinesterase and choline acetylase inhibitors on the potassium concentration gradient and potassium exchange of human erythrocytes. Am J Physiol. 1952 Mar;168(3):658–665. doi: 10.1152/ajplegacy.1952.168.3.658. [DOI] [PubMed] [Google Scholar]
- VLADIMIROV G. E., VLASSOVA V. G., KOLOTILOVA A. Y., LYZLOVA S. N., PANTELEYEVA N. S. The free energy of hydrolysis of adenosine triphosphoric acid. Nature. 1957 Jun 29;179(4574):1350–1351. doi: 10.1038/1791350a0. [DOI] [PubMed] [Google Scholar]
- WHITTAM R., DAVIES R. E. Energy requirements for ion transport in steady-state systems. Nature. 1954 Mar 13;173(4402):494–494. doi: 10.1038/173494a0. [DOI] [PubMed] [Google Scholar]
- WHITTAM R. Potassium movements and phosphate metabolism in red cells. J Physiol. 1957 Jun 18;137(1):13–4P. [PubMed] [Google Scholar]