Skip to main content
Transactions of the American Ophthalmological Society logoLink to Transactions of the American Ophthalmological Society
. 2002;100:119–124.

Activated satellite cells are present in uninjured extraocular muscles of mature mice.

Linda K McLoon 1, Jonathan Wirtschafter 1
PMCID: PMC1358953  PMID: 12545684

Abstract

PURPOSE: We recently demonstrated that there is a continuous process of myonuclear addition into normal, uninjured adult myofibers in rabbit extraocular muscles (EOM). This phenomenon is not seen in skeletal muscles from normal, adult limbs. These features may explain the selective involvement of the EOM in progressive external ophthalmoplegia and oculopharyngeal muscular dystrophy due to an accumulation of damaged DNA in mitochondria and nuclei within the EOM as a result of repeated cycling of the muscle satellite cells. Many testable hypotheses flow from these observations. We investigated whether continuous myonuclear addition is present in normal mouse EOM so that mouse models of genetic disorders can be used to study the pathogenic mechanisms and to test potential therapies for human muscle disorders. METHODS: Bromodeoxyuridine (brdU) was injected intraperitoneally into C57 adult mice every 2 hours for 12 hours. Twenty-four hours later the animals were sacrificed, and the globes with the muscles attached were prepared for immunohistochemical localization of brdU-positive nuclei within the EOM. All cross sections were immunostained for both brdU and either dystrophin or laminin. RESULTS: All the rectus muscles from the mouse EOM examined contained both satellite cells and myonuclei that were positive for brdU. This demonstrates the division of satellite cells and the fusion of their daughter cells with existing adult EOM myofibers in mice. CONCLUSIONS: These data indicate that the process of continuous myonuclear addition is also active in mouse EOM. These findings will allow various mutant mouse models to be used to study the pathogenesis and treatment of various muscle disorders. The existence of continuous myonuclear addition in adult, uninjured EOM fundamentally changes the accepted notion that EOM myofibers are postmitotic.

Full Text

The Full Text of this article is available as a PDF (141.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brais B., Rouleau G. A., Bouchard J. P., Fardeau M., Tomé F. M. Oculopharyngeal muscular dystrophy. Semin Neurol. 1999;19(1):59–66. doi: 10.1055/s-2008-1040826. [DOI] [PubMed] [Google Scholar]
  2. Buckingham M. Skeletal muscle formation in vertebrates. Curr Opin Genet Dev. 2001 Aug;11(4):440–448. doi: 10.1016/s0959-437x(00)00215-x. [DOI] [PubMed] [Google Scholar]
  3. Fischer M. Dominik, Gorospe J. Rafael, Felder Edward, Bogdanovich Sasha, Pedrosa-Domellöf F., Ahima Rexford S., Rubinstein Neal A., Hoffman Eric P., Khurana Tejvir S. Expression profiling reveals metabolic and structural components of extraocular muscles. Physiol Genomics. 2002 Mar 5;9(2):71–84. doi: 10.1152/physiolgenomics.00115.2001. [DOI] [PubMed] [Google Scholar]
  4. Hirano M., DiMauro S. ANT1, Twinkle, POLG, and TP: new genes open our eyes to ophthalmoplegia. Neurology. 2001 Dec 26;57(12):2163–2165. doi: 10.1212/wnl.57.12.2163. [DOI] [PubMed] [Google Scholar]
  5. Horton R. M., Manfredi A. A., Conti-Tronconi B. M. The 'embryonic' gamma subunit of the nicotinic acetylcholine receptor is expressed in adult extraocular muscle. Neurology. 1993 May;43(5):983–986. doi: 10.1212/wnl.43.5.983. [DOI] [PubMed] [Google Scholar]
  6. Kaminski H. J., Maas E., Spiegel P., Ruff R. L. Why are eye muscles frequently involved in myasthenia gravis? Neurology. 1990 Nov;40(11):1663–1669. doi: 10.1212/wnl.40.11.1663. [DOI] [PubMed] [Google Scholar]
  7. Kaminski H. J., al-Hakim M., Leigh R. J., Katirji M. B., Ruff R. L. Extraocular muscles are spared in advanced Duchenne dystrophy. Ann Neurol. 1992 Oct;32(4):586–588. doi: 10.1002/ana.410320418. [DOI] [PubMed] [Google Scholar]
  8. Karpati G., Carpenter S., Prescott S. Small-caliber skeletal muscle fibers do not suffer necrosis in mdx mouse dystrophy. Muscle Nerve. 1988 Aug;11(8):795–803. doi: 10.1002/mus.880110802. [DOI] [PubMed] [Google Scholar]
  9. Karpati G., Carpenter S. Small-caliber skeletal muscle fibers do not suffer deleterious consequences of dystrophic gene expression. Am J Med Genet. 1986 Dec;25(4):653–658. doi: 10.1002/ajmg.1320250407. [DOI] [PubMed] [Google Scholar]
  10. Lopez F., Belloc F., Lacombe F., Dumain P., Reiffers J., Bernard P., Boisseau M. R. Modalities of synthesis of Ki67 antigen during the stimulation of lymphocytes. Cytometry. 1991;12(1):42–49. doi: 10.1002/cyto.990120107. [DOI] [PubMed] [Google Scholar]
  11. Lucas C. A., Hoh J. F. Extraocular fast myosin heavy chain expression in the levator palpebrae and retractor bulbi muscles. Invest Ophthalmol Vis Sci. 1997 Dec;38(13):2817–2825. [PubMed] [Google Scholar]
  12. McGeachie J. K., Grounds M. D. Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res. 1987 Apr;248(1):125–130. doi: 10.1007/BF01239972. [DOI] [PubMed] [Google Scholar]
  13. McLoon L. K., Wirtschafter J. D. N-CAM is expressed in mature extraocular muscles in a pattern conserved among three species. Invest Ophthalmol Vis Sci. 1996 Feb;37(2):318–327. [PubMed] [Google Scholar]
  14. McLoon Linda K., Wirtschafter Jonathan D. Continuous myonuclear addition to single extraocular myofibers in uninjured adult rabbits. Muscle Nerve. 2002 Mar;25(3):348–358. doi: 10.1002/mus.10056. [DOI] [PubMed] [Google Scholar]
  15. Porter J. D., Baker R. S. Muscles of a different 'color': the unusual properties of the extraocular muscles may predispose or protect them in neurogenic and myogenic disease. Neurology. 1996 Jan;46(1):30–37. doi: 10.1212/wnl.46.1.30. [DOI] [PubMed] [Google Scholar]
  16. Porter J. D., Hauser K. F. Survival of extraocular muscle in long-term organotypic culture: differential influence of appropriate and inappropriate motoneurons. Dev Biol. 1993 Nov;160(1):39–50. doi: 10.1006/dbio.1993.1284. [DOI] [PubMed] [Google Scholar]
  17. Quaini Federico, Urbanek Konrad, Beltrami Antonio P., Finato Nicoletta, Beltrami Carlo A., Nadal-Ginard Bernardo, Kajstura Jan, Leri Annarosa, Anversa Piero. Chimerism of the transplanted heart. N Engl J Med. 2002 Jan 3;346(1):5–15. doi: 10.1056/NEJMoa012081. [DOI] [PubMed] [Google Scholar]
  18. Silvestrini R., Costa A., Veneroni S., Del Bino G., Persici P. Comparative analysis of different approaches to investigate cell kinetics. Cell Tissue Kinet. 1988 Mar;21(2):123–131. doi: 10.1111/j.1365-2184.1988.tb00778.x. [DOI] [PubMed] [Google Scholar]
  19. Smith C. K., 2nd, Janney M. J., Allen R. E. Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. J Cell Physiol. 1994 May;159(2):379–385. doi: 10.1002/jcp.1041590222. [DOI] [PubMed] [Google Scholar]
  20. Uyama E., Tsukahara T., Goto K., Kurano Y., Ogawa M., Kim Y. J., Uchino M., Arahata K. Nuclear accumulation of expanded PABP2 gene product in oculopharyngeal muscular dystrophy. Muscle Nerve. 2000 Oct;23(10):1549–1554. doi: 10.1002/1097-4598(200010)23:10<1549::aid-mus11>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  21. Weiss A., Schiaffino S., Leinwand L. A. Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: implications for functional diversity. J Mol Biol. 1999 Jul 2;290(1):61–75. doi: 10.1006/jmbi.1999.2865. [DOI] [PubMed] [Google Scholar]
  22. Wieczorek D. F., Periasamy M., Butler-Browne G. S., Whalen R. G., Nadal-Ginard B. Co-expression of multiple myosin heavy chain genes, in addition to a tissue-specific one, in extraocular musculature. J Cell Biol. 1985 Aug;101(2):618–629. doi: 10.1083/jcb.101.2.618. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Transactions of the American Ophthalmological Society are provided here courtesy of American Ophthalmological Society

RESOURCES