Skip to main content
Transactions of the American Ophthalmological Society logoLink to Transactions of the American Ophthalmological Society
. 2002;100:243–271.

The use of antimicrobial peptides in ophthalmology: an experimental study in corneal preservation and the management of bacterial keratitis.

Mark J Mannis 1
PMCID: PMC1358966  PMID: 12545697

Abstract

PURPOSE: Bacterial keratitis is an ocular infection with the potential to cause significant visual impairment. Increasing patterns of antibiotic resistance have necessitated the development of new antimicrobial agents for use in bacterial keratitis and other serious ocular infections. With a view to exploring the use of novel antimicrobial peptides in the management of ocular infection, we performed a series of experiments using synthetic antimicrobial peptides designed for the eradication of common and serious ophthalmic pathogens. METHODS: Experiments were performed with three clinical ocular isolates--Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis--in three experimental settings: (1) in vitro in a controlled system of 10 mM sodium phosphate buffer, (2) in vitro in modified chondroitin sulfate-based corneal preservation media (Optisol), and (3) in an in vivo animal model (rabbit) simulating bacterial keratitis. In all cases, outcomes were measured by quantitative microbiological techniques. RESULTS: The candidate peptides (CCI A, B, and C and COL-1) produced a total reduction of the test pathogens in phosphate buffered saline. In modified Optisol, the peptides were effective against S epidermidis at all temperatures, demonstrated augmented activity at 23 degrees C against the gram-positive organisms, but were ineffective against P aeruginosa. The addition of EDTA to the medium augmented the killing of P aeruginosa but made no difference in the reduction of gram-positive organisms. In an in vivo rabbit model of Pseudomonas keratitis, COL-1 demonstrated neither clinical nor microbicidal efficacy and appeared to have a very narrow dosage range, outside of which it appeared to be toxic to the ocular surface. CONCLUSION: Our data indicate that the antimicrobial peptides we tested were effective in vitro but not in vivo. In an age of increasing antibiotic resistance, antimicrobial peptides, developed over millions of years as innate defense mechanisms by plants and animals, may have significant potential for development as topical agents for the management of severe bacterial keratitis. However, modifications of the peptides, the drug delivery systems, or both, will be necessary for effective clinical application.

Full Text

The Full Text of this article is available as a PDF (631.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad I., Perkins W. R., Lupan D. M., Selsted M. E., Janoff A. S. Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochim Biophys Acta. 1995 Jul 26;1237(2):109–114. doi: 10.1016/0005-2736(95)00087-j. [DOI] [PubMed] [Google Scholar]
  2. Alcouloumre M. S., Ghannoum M. A., Ibrahim A. S., Selsted M. E., Edwards J. E., Jr Fungicidal properties of defensin NP-1 and activity against Cryptococcus neoformans in vitro. Antimicrob Agents Chemother. 1993 Dec;37(12):2628–2632. doi: 10.1128/aac.37.12.2628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alió J. L., Artola A., Serra A., Ayala M. J., Mulet M. E. Effect of topical antioxidant therapy on experimental infectious keratitis. Cornea. 1995 Mar;14(2):175–179. [PubMed] [Google Scholar]
  4. Andreu D., Merrifield R. B., Steiner H., Boman H. G. N-terminal analogues of cecropin A: synthesis, antibacterial activity, and conformational properties. Biochemistry. 1985 Mar 26;24(7):1683–1688. doi: 10.1021/bi00328a017. [DOI] [PubMed] [Google Scholar]
  5. Andreu D., Merrifield R. B., Steiner H., Boman H. G. Solid-phase synthesis of cecropin A and related peptides. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6475–6479. doi: 10.1073/pnas.80.21.6475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Andreu D., Ubach J., Boman A., Wåhlin B., Wade D., Merrifield R. B., Boman H. G. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett. 1992 Jan 20;296(2):190–194. doi: 10.1016/0014-5793(92)80377-s. [DOI] [PubMed] [Google Scholar]
  7. Arrowood M. J., Jaynes J. M., Healey M. C. In vitro activities of lytic peptides against the sporozoites of Cryptosporidium parvum. Antimicrob Agents Chemother. 1991 Feb;35(2):224–227. doi: 10.1128/aac.35.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baer J. C., Nirankari V. S., Glaros D. S. Streptococcal endophthalmitis from contaminated donor corneas after keratoplasty. Clinical and laboratory investigations. Arch Ophthalmol. 1988 Apr;106(4):517–520. doi: 10.1001/archopht.1988.01060130563037. [DOI] [PubMed] [Google Scholar]
  9. Ball P. Emergent resistance to ciprofloxacin amongst Pseudomonas aeruginosa and Staphylococcus aureus: clinical significance and therapeutic approaches. J Antimicrob Chemother. 1990 Dec;26 (Suppl F):165–179. doi: 10.1093/jac/26.suppl_f.165. [DOI] [PubMed] [Google Scholar]
  10. Barr S. C., Rose D., Jaynes J. M. Activity of lytic peptides against intracellular Trypanosoma cruzi amastigotes in vitro and parasitemias in mice. J Parasitol. 1995 Dec;81(6):974–978. [PubMed] [Google Scholar]
  11. Baum J., Barza M., Kane A. Efficacy of penicillin G, cefazolin, and gentamicin in M-K medium at 4 degrees C. Arch Ophthalmol. 1978 Jul;96(7):1262–1264. doi: 10.1001/archopht.1978.03910060088019. [DOI] [PubMed] [Google Scholar]
  12. Berkowitz B. A., Bevins C. L., Zasloff M. A. Magainins: a new family of membrane-active host defense peptides. Biochem Pharmacol. 1990 Feb 15;39(4):625–629. doi: 10.1016/0006-2952(90)90138-b. [DOI] [PubMed] [Google Scholar]
  13. Bevins C. L., Zasloff M. Peptides from frog skin. Annu Rev Biochem. 1990;59:395–414. doi: 10.1146/annurev.bi.59.070190.002143. [DOI] [PubMed] [Google Scholar]
  14. Boman H. G., Agerberth B., Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 1993 Jul;61(7):2978–2984. doi: 10.1128/iai.61.7.2978-2984.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Boman H. G. Antibacterial peptides: key components needed in immunity. Cell. 1991 Apr 19;65(2):205–207. doi: 10.1016/0092-8674(91)90154-q. [DOI] [PubMed] [Google Scholar]
  16. Boman H. G., Faye I., Gudmundsson G. H., Lee J. Y., Lidholm D. A. Cell-free immunity in Cecropia. A model system for antibacterial proteins. Eur J Biochem. 1991 Oct 1;201(1):23–31. doi: 10.1111/j.1432-1033.1991.tb16252.x. [DOI] [PubMed] [Google Scholar]
  17. Boman H. G., Faye I., von Hofsten P., Kockum K., Lee J. Y., Xanthopoulos K. G., Bennich H., Engström A., Merrifield R. B., Andreu D. On the primary structures of lysozyme, cecropins and attacins from Hyalophora cecropia. Dev Comp Immunol. 1985 Summer;9(3):551–558. doi: 10.1016/0145-305x(85)90018-7. [DOI] [PubMed] [Google Scholar]
  18. Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
  19. Boman H. G. Peptide antibiotics: holy or heretic grails of innate immunity? Scand J Immunol. 1996 May;43(5):475–482. doi: 10.1046/j.1365-3083.1996.d01-76.x. [DOI] [PubMed] [Google Scholar]
  20. Boman H. G., Steiner H. Humoral immunity in Cecropia pupae. Curr Top Microbiol Immunol. 1981;94-95:75–91. doi: 10.1007/978-3-642-68120-2_2. [DOI] [PubMed] [Google Scholar]
  21. Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):329–344. doi: 10.1016/s0145-305x(99)00015-4. [DOI] [PubMed] [Google Scholar]
  22. Callegan M. C., Hobden J. A., Hill J. M., Insler M. S., O'Callaghan R. J. Topical antibiotic therapy for the treatment of experimental Staphylococcus aureus keratitis. Invest Ophthalmol Vis Sci. 1992 Oct;33(11):3017–3023. [PubMed] [Google Scholar]
  23. Cameron J. A., Antonios S. R., Cotter J. B., Habash N. R. Endophthalmitis from contaminated donor corneas following penetrating keratoplasty. Arch Ophthalmol. 1991 Jan;109(1):54–59. doi: 10.1001/archopht.1991.01080010056032. [DOI] [PubMed] [Google Scholar]
  24. Cammue B. P., De Bolle M. F., Terras F. R., Proost P., Van Damme J., Rees S. B., Vanderleyden J., Broekaert W. F. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J Biol Chem. 1992 Feb 5;267(4):2228–2233. [PubMed] [Google Scholar]
  25. Charp P. A., Rice W. G., Raynor R. L., Reimund E., Kinkade J. M., Jr, Ganz T., Selsted M. E., Lehrer R. I., Kuo J. F. Inhibition of protein kinase C by defensins, antibiotic peptides from human neutrophils. Biochem Pharmacol. 1988 Mar 1;37(5):951–956. doi: 10.1016/0006-2952(88)90187-6. [DOI] [PubMed] [Google Scholar]
  26. Chin G. J., Marx J. Resistance to antibiotics. Science. 1994 Apr 15;264(5157):359–359. doi: 10.1126/science.264.5157.359. [DOI] [PubMed] [Google Scholar]
  27. Christensen B., Fink J., Merrifield R. B., Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5072–5076. doi: 10.1073/pnas.85.14.5072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Cohen M. A., Huband M. D. Activity of clinafloxacin, trovafloxacin, quinupristin/dalfopristin, and other antimicrobial agents versus Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Diagn Microbiol Infect Dis. 1999 Jan;33(1):43–46. doi: 10.1016/s0732-8893(98)00121-7. [DOI] [PubMed] [Google Scholar]
  29. Cruciani R. A., Barker J. L., Zasloff M., Chen H. C., Colamonici O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3792–3796. doi: 10.1073/pnas.88.9.3792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Cullor J. S., Mannis M. J., Murphy C. J., Smith W. L., Selsted M. E., Reid T. W. In vitro antimicrobial activity of defensins against ocular pathogens. Arch Ophthalmol. 1990 Jun;108(6):861–864. doi: 10.1001/archopht.1990.01070080105044. [DOI] [PubMed] [Google Scholar]
  31. Cullor J. S., Wood S., Smith W., Panico L., Selsted M. E. Bactericidal potency and mechanistic specificity of neutrophil defensins against bovine mastitis pathogens. Vet Microbiol. 1991 Sep;29(1):49–58. doi: 10.1016/0378-1135(91)90109-s. [DOI] [PubMed] [Google Scholar]
  32. Daher K. A., Selsted M. E., Lehrer R. I. Direct inactivation of viruses by human granulocyte defensins. J Virol. 1986 Dec;60(3):1068–1074. doi: 10.1128/jvi.60.3.1068-1074.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Darveau R. P., Cunningham M. D., Seachord C. L., Cassiano-Clough L., Cosand W. L., Blake J., Watkins C. S. Beta-lactam antibiotics potentiate magainin 2 antimicrobial activity in vitro and in vivo. Antimicrob Agents Chemother. 1991 Jun;35(6):1153–1159. doi: 10.1128/aac.35.6.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Daum T. E., Schaberg D. R., Terpenning M. S., Sottile W. S., Kauffman C. A. Increasing resistance of Staphylococcus aureus to ciprofloxacin. Antimicrob Agents Chemother. 1990 Sep;34(9):1862–1863. doi: 10.1128/aac.34.9.1862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Davies J. General mechanisms of antimicrobial resistance. Rev Infect Dis. 1979 Jan-Feb;1(1):23–29. doi: 10.1093/clinids/1.1.23. [DOI] [PubMed] [Google Scholar]
  36. DeMuri G. P., Hostetter M. K. Resistance to antifungal agents. Pediatr Clin North Am. 1995 Jun;42(3):665–685. doi: 10.1016/s0031-3955(16)38984-2. [DOI] [PubMed] [Google Scholar]
  37. Dever L. L., Handwerger S. Persistence of vancomycin-resistant Enterococcus faecium gastrointestinal tract colonization in antibiotic-treated mice. Microb Drug Resist. 1996 Winter;2(4):415–421. doi: 10.1089/mdr.1996.2.415. [DOI] [PubMed] [Google Scholar]
  38. Devi A. S., Sitaram N., Nagaraj R. Structural features of helical aggregates of antibacterial peptides via simulated annealing and molecular modeling. J Biomol Struct Dyn. 1998 Feb;15(4):653–661. doi: 10.1080/07391102.1998.10508982. [DOI] [PubMed] [Google Scholar]
  39. Diamond G., Russell J. P., Bevins C. L. Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5156–5160. doi: 10.1073/pnas.93.10.5156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Diamond G., Zasloff M., Eck H., Brasseur M., Maloy W. L., Bevins C. L. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3952–3956. doi: 10.1073/pnas.88.9.3952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Duclohier H., Molle G., Spach G. Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers. Biophys J. 1989 Nov;56(5):1017–1021. doi: 10.1016/S0006-3495(89)82746-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Edmond M. B., Wenzel R. P., Pasculle A. W. Vancomycin-resistant Staphylococcus aureus: perspectives on measures needed for control. Ann Intern Med. 1996 Feb 1;124(3):329–334. doi: 10.7326/0003-4819-124-3-199602010-00008. [DOI] [PubMed] [Google Scholar]
  43. Eisenhauer P. B., Harwig S. S., Szklarek D., Ganz T., Selsted M. E., Lehrer R. I. Purification and antimicrobial properties of three defensins from rat neutrophils. Infect Immun. 1989 Jul;57(7):2021–2027. doi: 10.1128/iai.57.7.2021-2027.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Eisenhauer P., Harwig S. S., Szklarek D., Ganz T., Lehrer R. I. Polymorphic expression of defensins in neutrophils from outbred rats. Infect Immun. 1990 Dec;58(12):3899–3902. doi: 10.1128/iai.58.12.3899-3902.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Engel L. S., Callegan M. C., Hobden J. A., Reidy J. J., Hill J. M., O'Callaghan R. J. Effectiveness of specific antibiotic/steroid combinations for therapy of experimental Pseudomonas aeruginosa keratitis. Curr Eye Res. 1995 Mar;14(3):229–234. doi: 10.3109/02713689509033519. [DOI] [PubMed] [Google Scholar]
  46. Engel L. S., Hill J. M., Moreau J. M., Green L. C., Hobden J. A., O'Callaghan R. J. Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Invest Ophthalmol Vis Sci. 1998 Mar;39(3):662–665. [PubMed] [Google Scholar]
  47. Epley K. D., Katz H. R., Herling I., Lasky J. B. Platinum spatula versus Mini-tip Culturette in culturing bacterial keratitis. Cornea. 1998 Jan;17(1):74–78. doi: 10.1097/00003226-199801000-00012. [DOI] [PubMed] [Google Scholar]
  48. Er H., Turkoz Y., Ozerol I. H., Uzmez E. Effect of nitric oxide synthase inhibition in experimental Pseudomonas keratitis in rabbits. Eur J Ophthalmol. 1998 Jul-Sep;8(3):137–141. doi: 10.1177/112067219800800303. [DOI] [PubMed] [Google Scholar]
  49. Farrell P. L., Fan J. T., Smith R. E., Trousdale M. D. Donor cornea bacterial contamination. Cornea. 1991 Sep;10(5):381–386. doi: 10.1097/00003226-199109000-00004. [DOI] [PubMed] [Google Scholar]
  50. Fass R. J., Barnishan J., Ayers L. W. Emergence of bacterial resistance to imipenem and ciprofloxacin in a university hospital. J Antimicrob Chemother. 1995 Aug;36(2):343–353. doi: 10.1093/jac/36.2.343. [DOI] [PubMed] [Google Scholar]
  51. Fleischmann J., Selsted M. E., Lehrer R. I. Opsonic activity of MCP-1 and MCP-2, cationic peptides from rabbit alveolar macrophages. Diagn Microbiol Infect Dis. 1985 May;3(3):233–242. doi: 10.1016/0732-8893(85)90035-5. [DOI] [PubMed] [Google Scholar]
  52. Frucht-Pery J., Golan G., Hemo I., Zauberman H., Shapiro M. Efficacy of topical gentamicin treatment after 193-nm photorefractive keratectomy in an experimental Pseudomonas keratitis model. Graefes Arch Clin Exp Ophthalmol. 1995 Aug;233(8):532–534. doi: 10.1007/BF00183436. [DOI] [PubMed] [Google Scholar]
  53. Fuchs P. C., Barry A. L., Brown S. D. In vitro antimicrobial activity of MSI-78, a magainin analog. Antimicrob Agents Chemother. 1998 May;42(5):1213–1216. doi: 10.1128/aac.42.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Gallin J. I., Fletcher M. P., Seligmann B. E., Hoffstein S., Cehrs K., Mounessa N. Human neutrophil-specific granule deficiency: a model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response. Blood. 1982 Jun;59(6):1317–1329. [PubMed] [Google Scholar]
  55. Gallo R. L., Huttner K. M. Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol. 1998 Nov;111(5):739–743. doi: 10.1046/j.1523-1747.1998.00361.x. [DOI] [PubMed] [Google Scholar]
  56. Ganz T. Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect Immun. 1987 Mar;55(3):568–571. doi: 10.1128/iai.55.3.568-571.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ganz T., Lehrer R. I. Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today. 1999 Jul;5(7):292–297. doi: 10.1016/s1357-4310(99)01490-2. [DOI] [PubMed] [Google Scholar]
  58. Ganz T., Lehrer R. I. Antimicrobial peptides of leukocytes. Curr Opin Hematol. 1997 Jan;4(1):53–58. doi: 10.1097/00062752-199704010-00009. [DOI] [PubMed] [Google Scholar]
  59. Ganz T., Liu L., Valore E. V., Oren A. Posttranslational processing and targeting of transgenic human defensin in murine granulocyte, macrophage, fibroblast, and pituitary adenoma cell lines. Blood. 1993 Jul 15;82(2):641–650. [PubMed] [Google Scholar]
  60. Ganz T., Selsted M. E., Lehrer R. I. Antimicrobial activity of phagocyte granule proteins. Semin Respir Infect. 1986 Jun;1(2):107–117. [PubMed] [Google Scholar]
  61. Ganz T., Selsted M. E., Lehrer R. I. Defensins. Eur J Haematol. 1990 Jan;44(1):1–8. doi: 10.1111/j.1600-0609.1990.tb00339.x. [DOI] [PubMed] [Google Scholar]
  62. Ganz T., Selsted M. E., Szklarek D., Harwig S. S., Daher K., Bainton D. F., Lehrer R. I. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985 Oct;76(4):1427–1435. doi: 10.1172/JCI112120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Garcia-Ferrer F. J., Murray P. R., Pepose J. S. Corneal endothelial toxicity of DexSol corneal storage medium supplemented with povidone-iodine. Arch Ophthalmol. 1992 Nov;110(11):1519–1520. doi: 10.1001/archopht.1992.01080230017007. [DOI] [PubMed] [Google Scholar]
  64. Garcia-Ferrer F. J., Pepose J. S., Murray P. R., Glaser S. R., Lass J. H., Green W. R. Antimicrobial efficacy and corneal endothelial toxicity of DexSol corneal storage medium supplemented with vancomycin. Ophthalmology. 1991 Jun;98(6):863–869. doi: 10.1016/s0161-6420(91)32208-5. [DOI] [PubMed] [Google Scholar]
  65. Garg P., Sharma S., Rao G. N. Ciprofloxacin-resistant Pseudomonas keratitis. Ophthalmology. 1999 Jul;106(7):1319–1323. doi: 10.1016/S0161-6420(99)00717-4. [DOI] [PubMed] [Google Scholar]
  66. Gelender H., Rettich C. Gentamicin-resistant Pseudomonas aeruginosa corneal ulcers. Cornea. 1984;3(1):21–26. [PubMed] [Google Scholar]
  67. Glynn M. K., Bopp C., Dewitt W., Dabney P., Mokhtar M., Angulo F. J. Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med. 1998 May 7;338(19):1333–1338. doi: 10.1056/NEJM199805073381901. [DOI] [PubMed] [Google Scholar]
  68. Goldstein M. H., Kowalski R. P., Gordon Y. J. Emerging fluoroquinolone resistance in bacterial keratitis: a 5-year review. Ophthalmology. 1999 Jul;106(7):1313–1318. [PubMed] [Google Scholar]
  69. Gough M., Hancock R. E., Kelly N. M. Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun. 1996 Dec;64(12):4922–4927. doi: 10.1128/iai.64.12.4922-4927.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Gudmundsson G. H., Lidholm D. A., Asling B., Gan R., Boman H. G. The cecropin locus. Cloning and expression of a gene cluster encoding three antibacterial peptides in Hyalophora cecropia. J Biol Chem. 1991 Jun 25;266(18):11510–11517. [PubMed] [Google Scholar]
  71. Gunshefski L., Mannis M. J., Cullor J. S., Schwab I. R., Jaynes J., Smith W. L., Mabry E., Murphy C. J. In vitro antimicrobial activity of Shiva-11 against ocular pathogens. Cornea. 1994 May;13(3):237–242. doi: 10.1097/00003226-199405000-00008. [DOI] [PubMed] [Google Scholar]
  72. Guzek J. P., Cline D. J., Row P. K., Wessels I. F., Beeve S., Ispirescu S., Aprecio R. M., Kettering J. D., Gano D. L., Nelson G. M. Rabbit Streptococcus pneumoniae keratitis model and topical therapy. Invest Ophthalmol Vis Sci. 1998 Oct;39(11):2012–2017. [PubMed] [Google Scholar]
  73. Hancock R. E. Host defence (cationic) peptides: what is their future clinical potential? Drugs. 1999 Apr;57(4):469–473. doi: 10.2165/00003495-199957040-00002. [DOI] [PubMed] [Google Scholar]
  74. Harder J., Bartels J., Christophers E., Schröder J. M. A peptide antibiotic from human skin. Nature. 1997 Jun 26;387(6636):861–861. doi: 10.1038/43088. [DOI] [PubMed] [Google Scholar]
  75. Hill C. P., Yee J., Selsted M. E., Eisenberg D. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science. 1991 Mar 22;251(5000):1481–1485. doi: 10.1126/science.2006422. [DOI] [PubMed] [Google Scholar]
  76. Hoffmann J. A., Reichhart J. M., Hetru C. Innate immunity in higher insects. Curr Opin Immunol. 1996 Feb;8(1):8–13. doi: 10.1016/s0952-7915(96)80098-7. [DOI] [PubMed] [Google Scholar]
  77. Huang H. W. Peptide-lipid interactions and mechanisms of antimicrobial peptides. Novartis Found Symp. 1999;225:188–206. [PubMed] [Google Scholar]
  78. Hull D. S., Green K., McQuaig C. S., Bowman K., Van Horn D. L. Modification of the antibiotic system in M-K medium. Am J Ophthalmol. 1977 Feb;83(2):198–205. doi: 10.1016/0002-9394(77)90617-1. [DOI] [PubMed] [Google Scholar]
  79. Hultmark D., Engström A., Andersson K., Steiner H., Bennich H., Boman H. G. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 1983;2(4):571–576. doi: 10.1002/j.1460-2075.1983.tb01465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Hultmark D., Engström A., Bennich H., Kapur R., Boman H. G. Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem. 1982 Sep;127(1):207–217. doi: 10.1111/j.1432-1033.1982.tb06857.x. [DOI] [PubMed] [Google Scholar]
  81. Hultmark D., Steiner H., Rasmuson T., Boman H. G. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem. 1980 May;106(1):7–16. doi: 10.1111/j.1432-1033.1980.tb05991.x. [DOI] [PubMed] [Google Scholar]
  82. Hume E. B., Moreau J. M., Conerly L. L., Cannon B. M., Dajcs J. J., Hill J. M., O'Callaghan R. J. Clarithromycin for experimental Staphylococcus aureus keratitis. Curr Eye Res. 1999 May;18(5):358–362. doi: 10.1076/ceyr.18.5.358.5350. [DOI] [PubMed] [Google Scholar]
  83. Humphreys H., Mulvihill E. Ciprofloxacin-resistant Staphylococcus aureus. Lancet. 1985 Aug 17;2(8451):383–383. doi: 10.1016/s0140-6736(85)92510-3. [DOI] [PubMed] [Google Scholar]
  84. Hwang D. G., Nakamura T., Trousdale M. D., Smith T. M. Combination antibiotic supplementation of corneal storage medium. Am J Ophthalmol. 1993 Mar 15;115(3):299–308. doi: 10.1016/s0002-9394(14)73579-2. [DOI] [PubMed] [Google Scholar]
  85. Hwang P. M., Vogel H. J. Structure-function relationships of antimicrobial peptides. Biochem Cell Biol. 1998;76(2-3):235–246. doi: 10.1139/bcb-76-2-3-235. [DOI] [PubMed] [Google Scholar]
  86. Insler M. S., Cavanagh H. D., Wilson L. A. Gentamicin-resistant Pseudomonas endophthalmitis after penetrating keratoplasty. Br J Ophthalmol. 1985 Mar;69(3):189–191. doi: 10.1136/bjo.69.3.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Insler M. S., Urso L. F. Candida albicans endophthalmitis after penetrating keratoplasty. Am J Ophthalmol. 1987 Jul 15;104(1):57–60. doi: 10.1016/0002-9394(87)90293-5. [DOI] [PubMed] [Google Scholar]
  88. Iwahori A., Hirota Y., Sampe R., Miyano S., Numao N. Synthesis of reversed magainin 2 analogs enhanced antibacterial activity. Biol Pharm Bull. 1997 Mar;20(3):267–270. doi: 10.1248/bpb.20.267. [DOI] [PubMed] [Google Scholar]
  89. Iwahori A., Hirota Y., Sampe R., Miyano S., Takahashi N., Sasatsu M., Kondo I., Numao N. On the antibacterial activity of normal and reversed magainin 2 analogs against Helicobacter pylori. Biol Pharm Bull. 1997 Jul;20(7):805–808. doi: 10.1248/bpb.20.805. [DOI] [PubMed] [Google Scholar]
  90. Jaynes J. M., Burton C. A., Barr S. B., Jeffers G. W., Julian G. R., White K. L., Enright F. M., Klei T. R., Laine R. A. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J. 1988 Oct;2(13):2878–2883. doi: 10.1096/fasebj.2.13.3049204. [DOI] [PubMed] [Google Scholar]
  91. Jaynes J. M., Julian G. R., Jeffers G. W., White K. L., Enright F. M. In vitro cytocidal effect of lytic peptides on several transformed mammalian cell lines. Pept Res. 1989 Mar-Apr;2(2):157–160. [PubMed] [Google Scholar]
  92. Jones D. B. Initial therapy of suspected microbial corneal ulcers. II. Specific antibiotic therapy based on corneal smears. Surv Ophthalmol. 1979 Sep-Oct;24(2):97, 105-16. doi: 10.1016/0039-6257(79)90128-0. [DOI] [PubMed] [Google Scholar]
  93. Kagan B. L., Selsted M. E., Ganz T., Lehrer R. I. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci U S A. 1990 Jan;87(1):210–214. doi: 10.1073/pnas.87.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Karjalainen K., Vannas A. Bacterial contamination of donor corneas. Ophthalmic Surg. 1984 Sep;15(9):770–772. [PubMed] [Google Scholar]
  95. Kaufman H. E., Varnell E. D., Kaufman S. Chondroitin sulfate in a new cornea preservation medium. Am J Ophthalmol. 1984 Jul 15;98(1):112–114. doi: 10.1016/0002-9394(84)90198-3. [DOI] [PubMed] [Google Scholar]
  96. Kessler E., Kennah H. E., Brown S. I. Pseudomonas protease. Purification, partial characterization, and its effect on collagen, proteoglycan, and rabbit corneas. Invest Ophthalmol Vis Sci. 1977 Jun;16(6):488–497. [PubMed] [Google Scholar]
  97. Kloess P. M., Stulting R. D., Waring G. O., 3rd, Wilson L. A. Bacterial and fungal endophthalmitis after penetrating keratoplasty. Am J Ophthalmol. 1993 Mar 15;115(3):309–316. doi: 10.1016/s0002-9394(14)73580-9. [DOI] [PubMed] [Google Scholar]
  98. Knauf H. P., Silvany R., Southern P. M., Jr, Risser R. C., Wilson S. E. Susceptibility of corneal and conjunctival pathogens to ciprofloxacin. Cornea. 1996 Jan;15(1):66–71. [PubMed] [Google Scholar]
  99. Kowalski R. P., Sundar Raj C. V., Stuart J. C., Dunn D. S. Antifungal synergism. A proposed dosage for corneal storage medium. Arch Ophthalmol. 1985 Feb;103(2):250–256. doi: 10.1001/archopht.1985.01050020102030. [DOI] [PubMed] [Google Scholar]
  100. Kreger A. S., Griffin O. K. Physicochemical fractionation of extracellular cornea-damaging proteases of Pseudomonas aeruginosa. Infect Immun. 1974 May;9(5):828–834. doi: 10.1128/iai.9.5.828-834.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Kremer I., Robinson A., Braffman M., Drucker M., Goldenfeld M., Samra Z., Myszne-Daye N., Gaton D., Savir H. The effect of topical ceftazidime on pseudomonas keratitis in rabbits. Cornea. 1994 Jul;13(4):360–363. doi: 10.1097/00003226-199407000-00013. [DOI] [PubMed] [Google Scholar]
  102. Kudriashov B. A., Kondashevskaia M. V., Liapina L. A., Kokriakov V. N., Mazing Iu A., Shamova O. V. Deistvie defensina na protsess zazhivleniia asepticheskoi kozhnoi rany i na pronitsaemost' krovenosnykh sosudov. Biull Eksp Biol Med. 1990 Apr;109(4):391–393. [PubMed] [Google Scholar]
  103. Lai K. K. Treatment of vancomycin-resistant Enterococcus faecium infections. Arch Intern Med. 1996 Dec 9;156(22):2579–2584. [PubMed] [Google Scholar]
  104. Lambert J., Keppi E., Dimarcq J. L., Wicker C., Reichhart J. M., Dunbar B., Lepage P., Van Dorsselaer A., Hoffmann J., Fothergill J. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci U S A. 1989 Jan;86(1):262–266. doi: 10.1073/pnas.86.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Lass J. H., Gordon J. F., Sugar A., Norden R. A., Reinhart W. J., Meyer R. F., Soong H. K. Optisol containing streptomycin. Am J Ophthalmol. 1993 Oct 15;116(4):503–504. doi: 10.1016/s0002-9394(14)71413-8. [DOI] [PubMed] [Google Scholar]
  106. Lehrer R. I., Ganz T. Defensins: endogenous antibiotic peptides from human leukocytes. Ciba Found Symp. 1992;171:276–293. doi: 10.1002/9780470514344.ch16. [DOI] [PubMed] [Google Scholar]
  107. Lehrer R. I., Ganz T., Selsted M. E. Defensins: endogenous antibiotic peptides of animal cells. Cell. 1991 Jan 25;64(2):229–230. doi: 10.1016/0092-8674(91)90632-9. [DOI] [PubMed] [Google Scholar]
  108. Lehrer R. I., Ganz T., Selsted M. E. Oxygen-independent bactericidal systems. Mechanisms and disorders. Hematol Oncol Clin North Am. 1988 Mar;2(1):159–169. [PubMed] [Google Scholar]
  109. Lehrer R. I., Ladra K. M. Fungicidal components of mammalian granulocytes active against Cryptococcus neoformans. J Infect Dis. 1977 Jul;136(1):96–99. doi: 10.1093/infdis/136.1.96. [DOI] [PubMed] [Google Scholar]
  110. Lehrer R. I., Lichtenstein A. K., Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993;11:105–128. doi: 10.1146/annurev.iy.11.040193.000541. [DOI] [PubMed] [Google Scholar]
  111. Lehrer R. I., Szklarek D., Ganz T., Selsted M. E. Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity. Infect Immun. 1985 Jul;49(1):207–211. doi: 10.1128/iai.49.1.207-211.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Lehrer R. I., Szklarek D., Ganz T., Selsted M. E. Synergistic activity of rabbit granulocyte peptides against Candida albicans. Infect Immun. 1986 Jun;52(3):902–904. doi: 10.1128/iai.52.3.902-904.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Leibowitz H. M. Clinical evaluation of ciprofloxacin 0.3% ophthalmic solution for treatment of bacterial keratitis. Am J Ophthalmol. 1991 Oct;112(4 Suppl):34S–47S. [PubMed] [Google Scholar]
  114. Lemaitre B., Reichhart J. M., Hoffmann J. A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614–14619. doi: 10.1073/pnas.94.26.14614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Levitz S. M., Selsted M. E., Ganz T., Lehrer R. I., Diamond R. D. In vitro killing of spores and hyphae of Aspergillus fumigatus and Rhizopus oryzae by rabbit neutrophil cationic peptides and bronchoalveolar macrophages. J Infect Dis. 1986 Sep;154(3):483–489. doi: 10.1093/infdis/154.3.483. [DOI] [PubMed] [Google Scholar]
  116. Levy S. B. Multidrug resistance--a sign of the times. N Engl J Med. 1998 May 7;338(19):1376–1378. doi: 10.1056/NEJM199805073381909. [DOI] [PubMed] [Google Scholar]
  117. Lichtenstein A. K., Ganz T., Nguyen T. M., Selsted M. E., Lehrer R. I. Mechanism of target cytolysis by peptide defensins. Target cell metabolic activities, possibly involving endocytosis, are crucial for expression of cytotoxicity. J Immunol. 1988 Apr 15;140(8):2686–2694. [PubMed] [Google Scholar]
  118. Lichtenstein A. K., Ganz T., Selsted M. E., Lehrer R. I. Synergistic cytolysis mediated by hydrogen peroxide combined with peptide defensins. Cell Immunol. 1988 Jun;114(1):104–116. doi: 10.1016/0008-8749(88)90258-4. [DOI] [PubMed] [Google Scholar]
  119. Lichtenstein A., Ganz T., Selsted M. E., Lehrer R. I. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood. 1986 Dec;68(6):1407–1410. [PubMed] [Google Scholar]
  120. Maffett M., O'Day D. M. Ciprofloxacin-resistant bacterial keratitis. Am J Ophthalmol. 1993 Apr 15;115(4):545–546. doi: 10.1016/s0002-9394(14)74467-8. [DOI] [PubMed] [Google Scholar]
  121. Marion D., Zasloff M., Bax A. A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett. 1988 Jan 18;227(1):21–26. doi: 10.1016/0014-5793(88)81405-4. [DOI] [PubMed] [Google Scholar]
  122. Martin E., Ganz T., Lehrer R. I. Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol. 1995 Aug;58(2):128–136. doi: 10.1002/jlb.58.2.128. [DOI] [PubMed] [Google Scholar]
  123. Mathers W. D., Lemp M. A. Corneal rim cultures. Cornea. 1987;6(3):231–233. doi: 10.1097/00003226-198706030-00016. [DOI] [PubMed] [Google Scholar]
  124. Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta. 1998 Nov 10;1376(3):391–400. doi: 10.1016/s0304-4157(98)00014-8. [DOI] [PubMed] [Google Scholar]
  125. Matsuzaki K., Mitani Y., Akada K. Y., Murase O., Yoneyama S., Zasloff M., Miyajima K. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998 Oct 27;37(43):15144–15153. doi: 10.1021/bi9811617. [DOI] [PubMed] [Google Scholar]
  126. Matsuzaki K., Murase O., Fujii N., Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996 Sep 3;35(35):11361–11368. doi: 10.1021/bi960016v. [DOI] [PubMed] [Google Scholar]
  127. Matsuzaki K., Murase O., Fujii N., Miyajima K. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry. 1995 May 16;34(19):6521–6526. doi: 10.1021/bi00019a033. [DOI] [PubMed] [Google Scholar]
  128. Matsuzaki K., Murase O., Miyajima K. Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry. 1995 Oct 3;34(39):12553–12559. doi: 10.1021/bi00039a009. [DOI] [PubMed] [Google Scholar]
  129. Matsuzaki K., Nakamura A., Murase O., Sugishita K., Fujii N., Miyajima K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry. 1997 Feb 25;36(8):2104–2111. doi: 10.1021/bi961870p. [DOI] [PubMed] [Google Scholar]
  130. Matsuzaki K., Sugishita K., Fujii N., Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995 Mar 14;34(10):3423–3429. doi: 10.1021/bi00010a034. [DOI] [PubMed] [Google Scholar]
  131. Matsuzaki K., Sugishita K., Harada M., Fujii N., Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta. 1997 Jul 5;1327(1):119–130. doi: 10.1016/s0005-2736(97)00051-5. [DOI] [PubMed] [Google Scholar]
  132. Matsuzaki K., Sugishita K., Ishibe N., Ueha M., Nakata S., Miyajima K., Epand R. M. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 1998 Aug 25;37(34):11856–11863. doi: 10.1021/bi980539y. [DOI] [PubMed] [Google Scholar]
  133. Matsuzaki K., Sugishita K., Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Lett. 1999 Apr 23;449(2-3):221–224. doi: 10.1016/s0014-5793(99)00443-3. [DOI] [PubMed] [Google Scholar]
  134. Matsuzaki K., Yoneyama S., Fujii N., Miyajima K., Yamada K., Kirino Y., Anzai K. Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. Biochemistry. 1997 Aug 12;36(32):9799–9806. doi: 10.1021/bi970588v. [DOI] [PubMed] [Google Scholar]
  135. Matsuzaki K. [Molecular action mechanisms and membrane recognition of membrane-acting antimicrobial peptides]. Yakugaku Zasshi. 1997 May;117(5):253–264. doi: 10.1248/yakushi1947.117.5_253. [DOI] [PubMed] [Google Scholar]
  136. McCarey B. E., Kaufman H. E. Improved corneal storage. Invest Ophthalmol. 1974 Mar;13(3):165–173. [PubMed] [Google Scholar]
  137. Mchaourab H. S., Hyde J. S., Feix J. B. Binding and state of aggregation of spin-labeled cecropin AD in phospholipid bilayers: effects of surface charge and fatty acyl chain length. Biochemistry. 1994 May 31;33(21):6691–6699. doi: 10.1021/bi00187a040. [DOI] [PubMed] [Google Scholar]
  138. Meister M., Lemaitre B., Hoffmann J. A. Antimicrobial peptide defense in Drosophila. Bioessays. 1997 Nov;19(11):1019–1026. doi: 10.1002/bies.950191112. [DOI] [PubMed] [Google Scholar]
  139. Michalová K., Moyes A. L., Cameron S., Juni B. A., Obritsch W. F., Dvorak J. A., Doughman D. J., Rhame F. S. Povidone-iodine (betadine) in the treatment of experimental Pseudomonas aeruginosa keratitis. Cornea. 1996 Sep;15(5):533–536. [PubMed] [Google Scholar]
  140. Mindrup E. A., Dubbel P. A., Doughman D. J. Betadine decontamination of donor globes. Cornea. 1993 Jul;12(4):324–329. doi: 10.1097/00003226-199307000-00008. [DOI] [PubMed] [Google Scholar]
  141. Mishler K. E., Keates R. H. Clinical safety of corneal storage media. Ophthalmic Surg. 1977 Feb;8(1):23–24. [PubMed] [Google Scholar]
  142. Moore A. J., Beazley W. D., Bibby M. C., Devine D. A. Antimicrobial activity of cecropins. J Antimicrob Chemother. 1996 Jun;37(6):1077–1089. doi: 10.1093/jac/37.6.1077. [DOI] [PubMed] [Google Scholar]
  143. Moore A. J., Devine D. A., Bibby M. C. Preliminary experimental anticancer activity of cecropins. Pept Res. 1994 Sep-Oct;7(5):265–269. [PubMed] [Google Scholar]
  144. Moore K. S., Bevins C. L., Brasseur M. M., Tomassini N., Turner K., Eck H., Zasloff M. Antimicrobial peptides in the stomach of Xenopus laevis. J Biol Chem. 1991 Oct 15;266(29):19851–19857. [PubMed] [Google Scholar]
  145. Moreau J. M., Green L. C., Engel L. S., Hill J. M., O'Callaghan R. J. Effectiveness of ciprofloxacin-polystyrene sulfonate (PSS), ciprofloxacin and ofloxacin in a Staphylococcus keratitis model. Curr Eye Res. 1998 Aug;17(8):808–812. [PubMed] [Google Scholar]
  146. Murphy C. J., Foster B. A., Mannis M. J., Selsted M. E., Reid T. W. Defensins are mitogenic for epithelial cells and fibroblasts. J Cell Physiol. 1993 May;155(2):408–413. doi: 10.1002/jcp.1041550223. [DOI] [PubMed] [Google Scholar]
  147. Natori S. [Antimicrobial proteins of insect and their clinical application]. Nihon Rinsho. 1995 May;53(5):1297–1304. [PubMed] [Google Scholar]
  148. Neu H. C. The crisis in antibiotic resistance. Science. 1992 Aug 21;257(5073):1064–1073. doi: 10.1126/science.257.5073.1064. [DOI] [PubMed] [Google Scholar]
  149. Nos-Barbera S., Portoles M., Morilla A., Ubach J., Andreu D., Paterson C. A. Effect of hybrid peptides of cecropin A and melittin in an experimental model of bacterial keratitis. Cornea. 1997 Jan;16(1):101–106. [PubMed] [Google Scholar]
  150. Okrent D. G., Lichtenstein A. K., Ganz T. Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells. Am Rev Respir Dis. 1990 Jan;141(1):179–185. doi: 10.1164/ajrccm/141.1.179. [DOI] [PubMed] [Google Scholar]
  151. Olson R. J., McMain M. E., Slappey T. E. Donor eye contamination. Ann Ophthalmol. 1979 Dec;11(12):1875–1878. [PubMed] [Google Scholar]
  152. Oren Z., Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998;47(6):451–463. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  153. Ormerod L. D., Hertzmark E., Gomez D. S., Stabiner R. G., Schanzlin D. J., Smith R. E. Epidemiology of microbial keratitis in southern California. A multivariate analysis. Ophthalmology. 1987 Oct;94(10):1322–1333. doi: 10.1016/s0161-6420(87)80019-2. [DOI] [PubMed] [Google Scholar]
  154. Ormerod L. D., Smith R. E. Contact lens-associated microbial keratitis. Arch Ophthalmol. 1986 Jan;104(1):79–83. doi: 10.1001/archopht.1986.01050130089027. [DOI] [PubMed] [Google Scholar]
  155. Ouellette A. J., Greco R. M., James M., Frederick D., Naftilan J., Fallon J. T. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol. 1989 May;108(5):1687–1695. doi: 10.1083/jcb.108.5.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Ouellette A. J., Lualdi J. C. A novel mouse gene family coding for cationic, cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin. J Biol Chem. 1990 Jun 15;265(17):9831–9837. [PubMed] [Google Scholar]
  157. Ouellette A. J., Selsted M. E. Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J. 1996 Sep;10(11):1280–1289. doi: 10.1096/fasebj.10.11.8836041. [DOI] [PubMed] [Google Scholar]
  158. Pardi A., Hare D. R., Selsted M. E., Morrison R. D., Bassolino D. A., Bach A. C., 2nd Solution structures of the rabbit neutrophil defensin NP-5. J Mol Biol. 1988 Jun 5;201(3):625–636. doi: 10.1016/0022-2836(88)90643-2. [DOI] [PubMed] [Google Scholar]
  159. Pardos G. J., Gallagher M. A. Microbial contamination of donor eyes. A retrospective study. Arch Ophthalmol. 1982 Oct;100(10):1611–1613. doi: 10.1001/archopht.1982.01030040589006. [DOI] [PubMed] [Google Scholar]
  160. Piers K. L., Brown M. H., Hancock R. E. Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother. 1994 Oct;38(10):2311–2316. doi: 10.1128/aac.38.10.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Polack F. M., Locatcher-Khorazo D., Gutierrez E. Bacteriologic study of "donor" eyes. Evaluation of antibacterial treatments prior to corneal grafting. Arch Ophthalmol. 1967 Aug;78(2):219–225. doi: 10.1001/archopht.1967.00980030221018. [DOI] [PubMed] [Google Scholar]
  162. Poole T. G., Insler M. S. Contamination of donor cornea by gentamicin-resistant organisms. Am J Ophthalmol. 1984 May;97(5):560–564. doi: 10.1016/0002-9394(84)90372-6. [DOI] [PubMed] [Google Scholar]
  163. Preston M. J., Gerçeker A. A., Koles N. L., Pollack M., Pier G. B. Prophylactic and therapeutic efficacy of immunoglobulin G antibodies to Pseudomonas aeruginosa lipopolysaccharide against murine experimental corneal infection. Invest Ophthalmol Vis Sci. 1997 Jun;38(7):1418–1425. [PubMed] [Google Scholar]
  164. Rees J. A., Moniatte M., Bulet P. Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect Biochem Mol Biol. 1997 May;27(5):413–422. doi: 10.1016/s0965-1748(97)00013-1. [DOI] [PubMed] [Google Scholar]
  165. Rice W. G., Ganz T., Kinkade J. M., Jr, Selsted M. E., Lehrer R. I., Parmley R. T. Defensin-rich dense granules of human neutrophils. Blood. 1987 Sep;70(3):757–765. [PubMed] [Google Scholar]
  166. Saberwal G., Nagaraj R. Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. Biochim Biophys Acta. 1994 Jun 29;1197(2):109–131. doi: 10.1016/0304-4157(94)90002-7. [DOI] [PubMed] [Google Scholar]
  167. Samakovlis C., Kimbrell D. A., Kylsten P., Engström A., Hultmark D. The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J. 1990 Sep;9(9):2969–2976. doi: 10.1002/j.1460-2075.1990.tb07489.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Sawyer J. G., Martin N. L., Hancock R. E. Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa. Infect Immun. 1988 Mar;56(3):693–698. doi: 10.1128/iai.56.3.693-698.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Schuster F. L., Jacob L. S. Effects of magainins on ameba and cyst stages of Acanthamoeba polyphaga. Antimicrob Agents Chemother. 1992 Jun;36(6):1263–1271. doi: 10.1128/aac.36.6.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Schwab I. R., Dries D., Cullor J., Smith W., Mannis M., Reid T., Murphy C. J. Corneal storage medium preservation with defensins. Cornea. 1992 Sep;11(5):370–375. doi: 10.1097/00003226-199209000-00002. [DOI] [PubMed] [Google Scholar]
  171. Selsted M. E., Brown D. M., DeLange R. J., Harwig S. S., Lehrer R. I. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem. 1985 Apr 25;260(8):4579–4584. [PubMed] [Google Scholar]
  172. Selsted M. E., Brown D. M., DeLange R. J., Harwig S. S., Lehrer R. I. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem. 1985 Apr 25;260(8):4579–4584. [PubMed] [Google Scholar]
  173. Selsted M. E., Harwig S. S. Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J Biol Chem. 1989 Mar 5;264(7):4003–4007. [PubMed] [Google Scholar]
  174. Selsted M. E., Harwig S. S., Ganz T., Schilling J. W., Lehrer R. I. Primary structures of three human neutrophil defensins. J Clin Invest. 1985 Oct;76(4):1436–1439. doi: 10.1172/JCI112121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Selsted M. E., Harwig S. S. Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. Infect Immun. 1987 Sep;55(9):2281–2286. doi: 10.1128/iai.55.9.2281-2286.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Selsted M. E., Miller S. I., Henschen A. H., Ouellette A. J. Enteric defensins: antibiotic peptide components of intestinal host defense. J Cell Biol. 1992 Aug;118(4):929–936. doi: 10.1083/jcb.118.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Selsted M. E., Szklarek D., Lehrer R. I. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun. 1984 Jul;45(1):150–154. doi: 10.1128/iai.45.1.150-154.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Selsted M. E., Tang Y. Q., Morris W. L., McGuire P. A., Novotny M. J., Smith W., Henschen A. H., Cullor J. S. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem. 1993 Mar 25;268(9):6641–6648. [PubMed] [Google Scholar]
  179. Sheu M. J., Baldwin W. W., Brunson K. W. Cytotoxicity of rabbit macrophage peptides MCP-1 and MCP-2 for mouse tumor cells. Antimicrob Agents Chemother. 1985 Nov;28(5):626–629. doi: 10.1128/aac.28.5.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Silvestro L., Gupta K., Weiser J. N., Axelsen P. H. The concentration-dependent membrane activity of cecropin A. Biochemistry. 1997 Sep 23;36(38):11452–11460. doi: 10.1021/bi9630826. [DOI] [PubMed] [Google Scholar]
  181. Simmaco M., Mangoni M. L., Boman A., Barra D., Boman H. G. Experimental infections of Rana esculenta with Aeromonas hydrophila: a molecular mechanism for the control of the normal flora. Scand J Immunol. 1998 Oct;48(4):357–363. doi: 10.1046/j.1365-3083.1998.00407.x. [DOI] [PubMed] [Google Scholar]
  182. Simmaco M., Mignogna G., Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers. 1998;47(6):435–450. doi: 10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  183. Sipos D., Andersson M., Ehrenberg A. The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. Eur J Biochem. 1992 Oct 1;209(1):163–169. doi: 10.1111/j.1432-1033.1992.tb17273.x. [DOI] [PubMed] [Google Scholar]
  184. Smith S. M., Eng R. H., Bais P., Fan-Havard P., Tecson-Tumang F. Epidemiology of ciprofloxacin resistance among patients with methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 1990 Oct;26(4):567–572. doi: 10.1093/jac/26.4.567. [DOI] [PubMed] [Google Scholar]
  185. Snyder M. E., Katz H. R. Ciprofloxacin-resistant bacterial keratitis. Am J Ophthalmol. 1992 Sep 15;114(3):336–338. doi: 10.1016/s0002-9394(14)71801-x. [DOI] [PubMed] [Google Scholar]
  186. Soravia E., Martini G., Zasloff M. Antimicrobial properties of peptides from Xenopus granular gland secretions. FEBS Lett. 1988 Feb 15;228(2):337–340. doi: 10.1016/0014-5793(88)80027-9. [DOI] [PubMed] [Google Scholar]
  187. Sousa L. B., Mannis M. J., Schwab I. R., Cullor J., Hosotani H., Smith W., Jaynes J. The use of synthetic Cecropin (D5C) in disinfecting contact lens solutions. CLAO J. 1996 Apr;22(2):114–117. [PubMed] [Google Scholar]
  188. Stanfield R. L., Westbrook E. M., Selsted M. E. Characterization of two crystal forms of human defensin neutrophil cationic peptide 1, a naturally occurring antimicrobial peptide of leukocytes. J Biol Chem. 1988 Apr 25;263(12):5933–5935. [PubMed] [Google Scholar]
  189. Steinemann T. L., Kaufman H. E., Beuerman R. W., Varnell E. D., Thompson H. W., Aldridge K. E. Vancomycin-enriched corneal storage medium. Am J Ophthalmol. 1992 May 15;113(5):555–560. doi: 10.1016/s0002-9394(14)74729-4. [DOI] [PubMed] [Google Scholar]
  190. Steiner H., Andreu D., Merrifield R. B. Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim Biophys Acta. 1988 Apr 7;939(2):260–266. doi: 10.1016/0005-2736(88)90069-7. [DOI] [PubMed] [Google Scholar]
  191. Steiner H. Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. FEBS Lett. 1982 Jan 25;137(2):283–287. doi: 10.1016/0014-5793(82)80368-2. [DOI] [PubMed] [Google Scholar]
  192. Steinert R. F. Current therapy for bacterial keratitis and bacterial conjunctivitis. Am J Ophthalmol. 1991 Oct;112(4 Suppl):10S–14S. [PubMed] [Google Scholar]
  193. Sugar J., Liff J. Bacterial contamination of corneal donor tissue. Ophthalmic Surg. 1980 Apr;11(4):250–252. [PubMed] [Google Scholar]
  194. Tailor R. H., Acland D. P., Attenborough S., Cammue B. P., Evans I. J., Osborn R. W., Ray J. A., Rees S. B., Broekaert W. F. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J Biol Chem. 1997 Sep 26;272(39):24480–24487. doi: 10.1074/jbc.272.39.24480. [DOI] [PubMed] [Google Scholar]
  195. Territo M. C., Ganz T., Selsted M. E., Lehrer R. Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest. 1989 Dec;84(6):2017–2020. doi: 10.1172/JCI114394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Thomson K. S., Sanders C. C., Hayden M. E. In vitro studies with five quinolones: evidence for changes in relative potency as quinolone resistance rises. Antimicrob Agents Chemother. 1991 Nov;35(11):2329–2334. doi: 10.1128/aac.35.11.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Travis J. Reviving the antibiotic miracle? Science. 1994 Apr 15;264(5157):360–362. doi: 10.1126/science.8153615. [DOI] [PubMed] [Google Scholar]
  198. Twining S. S., Zhou X., Schulte D. P., Wilson P. M., Fish B., Moulder J. Effect of vitamin A deficiency on the early response to experimental Pseudomonas keratitis. Invest Ophthalmol Vis Sci. 1996 Mar;37(4):511–522. [PubMed] [Google Scholar]
  199. Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992 Sep;56(3):395–411. doi: 10.1128/mr.56.3.395-411.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Varley G. A., Meisler D. M. Complications of penetrating keratoplasty: graft infections. Refract Corneal Surg. 1991 Jan-Feb;7(1):62–66. [PubMed] [Google Scholar]
  201. Weckbach L. S., Bloom H. R., Wander A. H., Staneck J. L. Survival of Streptococcus pneumoniae in corneal storage media. Cornea. 1992 May;11(3):200–203. [PubMed] [Google Scholar]
  202. Westerhoff H. V., Juretić D., Hendler R. W., Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6597–6601. doi: 10.1073/pnas.86.17.6597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Westerhoff H. V., Zasloff M., Rosner J. L., Hendler R. W., De Waal A., Vaz Gomes A., Jongsma P. M., Riethorst A., Juretić D. Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur J Biochem. 1995 Mar 1;228(2):257–264. [PubMed] [Google Scholar]
  204. Wieprecht T., Beyermann M., Seelig J. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Biochemistry. 1999 Aug 10;38(32):10377–10387. doi: 10.1021/bi990913+. [DOI] [PubMed] [Google Scholar]
  205. Wooley R. E., Jones M. S., Shotts E. B., Jr Uptake of antibodies in gram-negative bacteria exposed to EDTA-Tris. Vet Microbiol. 1984 Dec;10(1):57–70. doi: 10.1016/0378-1135(84)90056-7. [DOI] [PubMed] [Google Scholar]
  206. Yamashita T., Saito K. Purification, primary structure, and biological activity of guinea pig neutrophil cationic peptides. Infect Immun. 1989 Aug;57(8):2405–2409. doi: 10.1128/iai.57.8.2405-2409.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Zasloff M. Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol. 1992 Feb;4(1):3–7. doi: 10.1016/0952-7915(92)90115-u. [DOI] [PubMed] [Google Scholar]
  208. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Zeya H. I., Spitznagel J. K. Cationic proteins of polymorphonuclear leukocyte lysosomes. I. Resolution of antibacterial and enzymatic activities. J Bacteriol. 1966 Feb;91(2):750–754. doi: 10.1128/jb.91.2.750-754.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Zhu Q. Z., Hu J., Mulay S., Esch F., Shimasaki S., Solomon S. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proc Natl Acad Sci U S A. 1988 Jan;85(2):592–596. doi: 10.1073/pnas.85.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Zhu Q., Solomon S. Isolation and mode of action of rabbit corticostatic (antiadrenocorticotropin) peptides. Endocrinology. 1992 Mar;130(3):1413–1423. doi: 10.1210/endo.130.3.1311240. [DOI] [PubMed] [Google Scholar]

Articles from Transactions of the American Ophthalmological Society are provided here courtesy of American Ophthalmological Society

RESOURCES