Skip to main content
Transactions of the American Ophthalmological Society logoLink to Transactions of the American Ophthalmological Society
. 2002;100:273–299.

Human retinal pigment epithelial lysis of extracellular matrix: functional urokinase plasminogen activator receptor, collagenase, and elastase.

Susan G Elner 1
PMCID: PMC1358967  PMID: 12545698

Abstract

PURPOSE: To show (1) human retinal pigment epithelial (HRPE) expression of functional urokinase plasminogen activator receptor (uPAR; CD87), (2) HRPE secretion of collagenase and elastase, (3) uPAR-dependent HRPE migration, and (4) uPAR expression in diseased human retinal tissue. METHODS: Immunohistochemistry for uPAR was performed on cultured HRPE cells and in sections of human retina. Double-immunofluorescent staining of live human RPE cells with anti-CR3 antibody (CD11b) was performed to demonstrate the physical proximity of this beta 2 integrin with uPAR and determine whether associations were dependent on RPE confluence and polarity. Extracellular proteolysis by HRPE uPAR was evaluated using fluorescent bodipy-BSA and assessed for specificity by plasminogen activator inhibitor-1 (PAI-1) inhibition. The effect of interleukin-1 beta (IL-1 beta) on uPAR expression was assessed. Collagenase and elastase secretion by unstimulated and IL-1-stimulated HRPE cells was measured by 3H-labelled collagen and elastin cleavage. HRPE-associated collagenase was also assessed by cleavage of fluorescent DQ-collagen and inhibited by phenanthroline. Using an extracellular matrix assay, the roles of uPAR and collagenase in HRPE migration were assessed. RESULTS: Immunoreactive uPAR was detected on cultured HRPE cells and increased by IL-1. On elongated, live HRPE cells, uPAR dissociated from CD11b (CR3) and translocated to anterior poles of migrating cells. Extracellular proteolysis was concentrated at sites of uPAR expression and specifically inhibited by PAI-1. Cultured HRPE cells secreted substantial, functional collagenase and elastase. IL-1 upregulated uPAR, collagenase, and elastase activities. Specific inhibition of uPAR, and to a lesser degree collagenase, reduced HRPE migration in matrix/gel assays. Immunoreactive uPAR was present along the HRPE basolateral membrane in retinal sections and in sections of diseased retinal tissue. CONCLUSIONS: HRPE cells express functional uPAR, collagenase, and elastase, which may permit HRPE proteolysis and migration. uPAR polarization may concentrate proteolysis at the leading edge of migrating HRPE cells.

Full Text

The Full Text of this article is available as a PDF (943.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J. P., Bradley J. M., Gabourel J. D., Acott T. S. Expression of matrix metalloproteinases and inhibitor by human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1990 Dec;31(12):2520–2528. [PubMed] [Google Scholar]
  2. Amin R., Puklin J. E., Frank R. N. Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci. 1994 Jul;35(8):3178–3188. [PubMed] [Google Scholar]
  3. Anderson D. H., Guérin C. J., Matsumoto B., Pfeffer B. A. Identification and localization of a beta-1 receptor from the integrin family in mammalian retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1990 Jan;31(1):81–93. [PubMed] [Google Scholar]
  4. Andreasen P. A., Kjøller L., Christensen L., Duffy M. J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997 Jul 3;72(1):1–22. doi: 10.1002/(sici)1097-0215(19970703)72:1<1::aid-ijc1>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  5. Arribas J., Coodly L., Vollmer P., Kishimoto T. K., Rose-John S., Massagué J. Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J Biol Chem. 1996 May 10;271(19):11376–11382. doi: 10.1074/jbc.271.19.11376. [DOI] [PubMed] [Google Scholar]
  6. Banda M. J., Clark E. J., Werb Z. Limited proteolysis by macrophage elastase inactivates human alpha 1-proteinase inhibitor. J Exp Med. 1980 Dec 1;152(6):1563–1570. doi: 10.1084/jem.152.6.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Banda M. J., Werb Z. Mouse macrophage elastase. Purification and characterization as a metalloproteinase. Biochem J. 1981 Feb 1;193(2):589–605. doi: 10.1042/bj1930589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berman M., Leary R., Gage J. Collagenase from corneal cell cultures and its modulation by phagocytosis. Invest Ophthalmol Vis Sci. 1979 Jun;18(6):588–601. [PubMed] [Google Scholar]
  9. Bian Z. M., Elner S. G., Strieter R. M., Kunkel S. L., Lukacs N. W., Elner V. M. IL-4 potentiates IL-1beta- and TNF-alpha-stimulated IL-8 and MCP-1 protein production in human retinal pigment epithelial cells. Curr Eye Res. 1999 May;18(5):349–357. doi: 10.1076/ceyr.18.5.349.5353. [DOI] [PubMed] [Google Scholar]
  10. Blasi F. Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. Bioessays. 1993 Feb;15(2):105–111. doi: 10.1002/bies.950150206. [DOI] [PubMed] [Google Scholar]
  11. Blasi F. uPA, uPAR, PAI-1: key intersection of proteolytic, adhesive and chemotactic highways? Immunol Today. 1997 Sep;18(9):415–417. doi: 10.1016/s0167-5699(97)01121-3. [DOI] [PubMed] [Google Scholar]
  12. Bohuslav J., Horejsí V., Hansmann C., Stöckl J., Weidle U. H., Majdic O., Bartke I., Knapp W., Stockinger H. Urokinase plasminogen activator receptor, beta 2-integrins, and Src-kinases within a single receptor complex of human monocytes. J Exp Med. 1995 Apr 1;181(4):1381–1390. doi: 10.1084/jem.181.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Boyd D., Florent G., Kim P., Brattain M. Determination of the levels of urokinase and its receptor in human colon carcinoma cell lines. Cancer Res. 1988 Jun 1;48(11):3112–3116. [PubMed] [Google Scholar]
  14. Bressler N. M., Bressler S. B., Fine S. L. Age-related macular degeneration. Surv Ophthalmol. 1988 May-Jun;32(6):375–413. doi: 10.1016/0039-6257(88)90052-5. [DOI] [PubMed] [Google Scholar]
  15. Bressler S. B., Silva J. C., Bressler N. M., Alexander J., Green W. R. Clinicopathologic correlation of occult choroidal neovascularization in age-related macular degeneration. Arch Ophthalmol. 1992 Jun;110(6):827–832. doi: 10.1001/archopht.1992.01080180099035. [DOI] [PubMed] [Google Scholar]
  16. Brinckerhoff C. E., Rutter J. L., Benbow U. Interstitial collagenases as markers of tumor progression. Clin Cancer Res. 2000 Dec;6(12):4823–4830. [PubMed] [Google Scholar]
  17. Brooks P. C., Strömblad S., Sanders L. C., von Schalscha T. L., Aimes R. T., Stetler-Stevenson W. G., Quigley J. P., Cheresh D. A. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell. 1996 May 31;85(5):683–693. doi: 10.1016/s0092-8674(00)81235-0. [DOI] [PubMed] [Google Scholar]
  18. Brown S. L., Lundgren C. H., Nordt T., Fujii S. Stimulation of migration of human aortic smooth muscle cells by vitronectin: implications for atherosclerosis. Cardiovasc Res. 1994 Dec;28(12):1815–1820. doi: 10.1093/cvr/28.12.1815. [DOI] [PubMed] [Google Scholar]
  19. Butler T. A., Zhu C., Mueller R. A., Fuller G. C., Lemaire W. J., Woessner J. F., Jr Inhibition of ovulation in the perfused rat ovary by the synthetic collagenase inhibitor SC 44463. Biol Reprod. 1991 Jun;44(6):1183–1188. doi: 10.1095/biolreprod44.6.1183. [DOI] [PubMed] [Google Scholar]
  20. Campochiaro P. A., Jerdon J. A., Glaser B. M. The extracellular matrix of human retinal pigment epithelial cells in vivo and its synthesis in vitro. Invest Ophthalmol Vis Sci. 1986 Nov;27(11):1615–1621. [PubMed] [Google Scholar]
  21. Campochiaro P. A., Mimuro J., Sugg R., Loskutoff D. J. Retinal pigment epithelial cells produce a latent fibrinolytic inhibitor that is antigenically and biochemically related to type 1 plasminogen activator inhibitor produced by vascular endothelial cells. Exp Eye Res. 1989 Aug;49(2):195–203. doi: 10.1016/0014-4835(89)90090-0. [DOI] [PubMed] [Google Scholar]
  22. Capon M. R., Marshall J., Krafft J. I., Alexander R. A., Hiscott P. S., Bird A. C. Sorsby's fundus dystrophy. A light and electron microscopic study. Ophthalmology. 1989 Dec;96(12):1769–1777. doi: 10.1016/s0161-6420(89)32664-9. [DOI] [PubMed] [Google Scholar]
  23. Chu P. G., Grunwald G. B. Functional inhibition of retinal pigment epithelial cell-substrate adhesion with a monoclonal antibody against the beta 1 subunit of integrin. Invest Ophthalmol Vis Sci. 1991 May;32(6):1763–1769. [PubMed] [Google Scholar]
  24. Curran S., Murray G. I. Matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 1999 Nov;189(3):300–308. doi: 10.1002/(SICI)1096-9896(199911)189:3<300::AID-PATH456>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  25. Dana N., Styrt B., Griffin J. D., Todd R. F., 3rd, Klempner M. S., Arnaout M. A. Two functional domains in the phagocyte membrane glycoprotein Mo1 identified with monoclonal antibodies. J Immunol. 1986 Nov 15;137(10):3259–3263. [PubMed] [Google Scholar]
  26. Danø K., Rømer J., Nielsen B. S., Bjørn S., Pyke C., Rygaard J., Lund L. R. Cancer invasion and tissue remodeling--cooperation of protease systems and cell types. APMIS. 1999 Jan;107(1):120–127. doi: 10.1111/j.1699-0463.1999.tb01534.x. [DOI] [PubMed] [Google Scholar]
  27. Davies P., Allison A. C. The macrophage as a secretory cell in chronic inflammation. Agents Actions. 1976 Feb;6(1-3):60–74. doi: 10.1007/BF01972187. [DOI] [PubMed] [Google Scholar]
  28. Davis G. E., Pintar Allen K. A., Salazar R., Maxwell S. A. Matrix metalloproteinase-1 and -9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J Cell Sci. 2001 Mar;114(Pt 5):917–930. doi: 10.1242/jcs.114.5.917. [DOI] [PubMed] [Google Scholar]
  29. De Nichilo M. O., Burns G. F. Granulocyte-macrophage and macrophage colony-stimulating factors differentially regulate alpha v integrin expression on cultured human macrophages. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2517–2521. doi: 10.1073/pnas.90.6.2517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Dhaliwal B. S., Steinbrecher U. P. Scavenger receptors and oxidized low density lipoproteins. Clin Chim Acta. 1999 Aug;286(1-2):191–205. doi: 10.1016/s0009-8981(99)00101-1. [DOI] [PubMed] [Google Scholar]
  31. Dingle J. T. The secretion of enzymes into the pericellular environment. Philos Trans R Soc Lond B Biol Sci. 1975 Jul 17;271(912):315–324. doi: 10.1098/rstb.1975.0055. [DOI] [PubMed] [Google Scholar]
  32. Eeckhout Y., Vaes G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem J. 1977 Jul 15;166(1):21–31. doi: 10.1042/bj1660021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ellerbroek S. M., Stack M. S. Membrane associated matrix metalloproteinases in metastasis. Bioessays. 1999 Nov;21(11):940–949. doi: 10.1002/(SICI)1521-1878(199911)21:11<940::AID-BIES6>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  34. Ellis V., Scully M. F., Kakkar V. V. Plasminogen activation initiated by single-chain urokinase-type plasminogen activator. Potentiation by U937 monocytes. J Biol Chem. 1989 Feb 5;264(4):2185–2188. [PubMed] [Google Scholar]
  35. Elner S. G., Elner V. M., Jaffe G. J., Stuart A., Kunkel S. L., Strieter R. M. Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr Eye Res. 1995 Nov;14(11):1045–1053. doi: 10.3109/02713689508998529. [DOI] [PubMed] [Google Scholar]
  36. Elner S. G., Strieter R. M., Elner V. M., Rollins B. J., Del Monte M. A., Kunkel S. L. Monocyte chemotactic protein gene expression by cytokine-treated human retinal pigment epithelial cells. Lab Invest. 1991 Jun;64(6):819–825. [PubMed] [Google Scholar]
  37. Elner V. M., Schaffner T., Taylor K., Glagov S. Immunophagocytic properties of retinal pigment epithelium cells. Science. 1981 Jan 2;211(4477):74–76. doi: 10.1126/science.7444450. [DOI] [PubMed] [Google Scholar]
  38. Elner V. M., Strieter R. M., Elner S. G., Baggiolini M., Lindley I., Kunkel S. L. Neutrophil chemotactic factor (IL-8) gene expression by cytokine-treated retinal pigment epithelial cells. Am J Pathol. 1990 Apr;136(4):745–750. [PMC free article] [PubMed] [Google Scholar]
  39. Emi K., Pederson J. E., Toris C. B. Hydrostatic pressure of the suprachoroidal space. Invest Ophthalmol Vis Sci. 1989 Feb;30(2):233–238. [PubMed] [Google Scholar]
  40. Estreicher A., Mühlhauser J., Carpentier J. L., Orci L., Vassalli J. D. The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol. 1990 Aug;111(2):783–792. doi: 10.1083/jcb.111.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Fariss R. N., Apte S. S., Luthert P. J., Bird A. C., Milam A. H. Accumulation of tissue inhibitor of metalloproteinases-3 in human eyes with Sorsby's fundus dystrophy or retinitis pigmentosa. Br J Ophthalmol. 1998 Nov;82(11):1329–1334. doi: 10.1136/bjo.82.11.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Feeney-Burns L., Ellersieck M. R. Age-related changes in the ultrastructure of Bruch's membrane. Am J Ophthalmol. 1985 Nov 15;100(5):686–697. doi: 10.1016/0002-9394(85)90625-7. [DOI] [PubMed] [Google Scholar]
  43. Fenton J. W., 2nd Regulation of thrombin generation and functions. Semin Thromb Hemost. 1988 Jul;14(3):234–240. doi: 10.1055/s-2007-1002783. [DOI] [PubMed] [Google Scholar]
  44. Fibbi G., Ziche M., Morbidelli L., Magnelli L., Del Rosso M. Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells. Exp Cell Res. 1988 Dec;179(2):385–395. doi: 10.1016/0014-4827(88)90277-7. [DOI] [PubMed] [Google Scholar]
  45. Francis J. W., Todd R. F., 3rd, Boxer L. A., Petty H. R. Histamine inhibits cell spreading and C3bi receptor clustering and diminishes hydrogen peroxide production by adherent human neutrophils. J Cell Physiol. 1991 Apr;147(1):128–137. doi: 10.1002/jcp.1041470117. [DOI] [PubMed] [Google Scholar]
  46. Frisch S. M., Morisaki J. H. Positive and negative transcriptional elements of the human type IV collagenase gene. Mol Cell Biol. 1990 Dec;10(12):6524–6532. doi: 10.1128/mcb.10.12.6524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Gailit J., Welch M. P., Clark R. A. TGF-beta 1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J Invest Dermatol. 1994 Aug;103(2):221–227. doi: 10.1111/1523-1747.ep12393176. [DOI] [PubMed] [Google Scholar]
  48. Galis Z. S., Sukhova G. K., Lark M. W., Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994 Dec;94(6):2493–2503. doi: 10.1172/JCI117619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Garbett E. A., Reed M. W., Brown N. J. Proteolysis in human breast and colorectal cancer. Br J Cancer. 1999 Sep;81(2):287–293. doi: 10.1038/sj.bjc.6690689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Garron L. K. The Ultrastructure of the Retinal Pigment Epithelium with Observations on the Choriocapillaris and Bruch's Membrane. Trans Am Ophthalmol Soc. 1963;61:545–588. [PMC free article] [PubMed] [Google Scholar]
  51. Gass J. D. Drusen and disciform macular detachment and degeneration. Arch Ophthalmol. 1973 Sep;90(3):206–217. doi: 10.1001/archopht.1973.01000050208006. [DOI] [PubMed] [Google Scholar]
  52. Ghosh S., Brown R., Jones J. C., Ellerbroek S. M., Stack M. S. Urinary-type plasminogen activator (uPA) expression and uPA receptor localization are regulated by alpha 3beta 1 integrin in oral keratinocytes. J Biol Chem. 2000 Aug 4;275(31):23869–23876. doi: 10.1074/jbc.M000935200. [DOI] [PubMed] [Google Scholar]
  53. Gijbels K., Masure S., Carton H., Opdenakker G. Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J Neuroimmunol. 1992 Nov;41(1):29–34. doi: 10.1016/0165-5728(92)90192-n. [DOI] [PubMed] [Google Scholar]
  54. Graham C. H., Lala P. K. Mechanism of control of trophoblast invasion in situ. J Cell Physiol. 1991 Aug;148(2):228–234. doi: 10.1002/jcp.1041480207. [DOI] [PubMed] [Google Scholar]
  55. Grant M. B., Guay C., Marsh R. Insulin-like growth factor I stimulates proliferation, migration, and plasminogen activator release by human retinal pigment epithelial cells. Curr Eye Res. 1990 Apr;9(4):323–335. doi: 10.3109/02713689008999620. [DOI] [PubMed] [Google Scholar]
  56. Green W. R. Clinicopathologic studies of treated choroidal neovascular membranes. A review and report of two cases. Retina. 1991;11(3):328–356. doi: 10.1097/00006982-199111030-00010. [DOI] [PubMed] [Google Scholar]
  57. Green W. R., Enger C. Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture. Ophthalmology. 1993 Oct;100(10):1519–1535. doi: 10.1016/s0161-6420(93)31466-1. [DOI] [PubMed] [Google Scholar]
  58. Green W. R., Key S. N., 3rd Senile macular degeneration: a histopathologic study. Trans Am Ophthalmol Soc. 1977;75:180–254. [PMC free article] [PubMed] [Google Scholar]
  59. Green W. R., McDonnell P. J., Yeo J. H. Pathologic features of senile macular degeneration. Ophthalmology. 1985 May;92(5):615–627. [PubMed] [Google Scholar]
  60. Grossniklaus H. E., Green W. R. Histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Submacular Surgery Trials Research Group. Arch Ophthalmol. 1998 Jun;116(6):745–749. doi: 10.1001/archopht.116.6.745. [DOI] [PubMed] [Google Scholar]
  61. Grossniklaus H. E., Hutchinson A. K., Capone A., Jr, Woolfson J., Lambert H. M. Clinicopathologic features of surgically excised choroidal neovascular membranes. Ophthalmology. 1994 Jun;101(6):1099–1111. doi: 10.1016/s0161-6420(13)31216-0. [DOI] [PubMed] [Google Scholar]
  62. Grossniklaus H. E., Martinez J. A., Brown V. B., Lambert H. M., Sternberg P., Jr, Capone A., Jr, Aaberg T. M., Lopez P. F. Immunohistochemical and histochemical properties of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol. 1992 Oct 15;114(4):464–472. doi: 10.1016/s0002-9394(14)71859-8. [DOI] [PubMed] [Google Scholar]
  63. Gudewicz P. W., Gilboa N. Human urokinase-type plasminogen activator stimulates chemotaxis of human neutrophils. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1176–1181. doi: 10.1016/s0006-291x(87)80193-6. [DOI] [PubMed] [Google Scholar]
  64. Gyetko M. R., Sitrin R. G., Fuller J. A., Todd R. F., 3rd, Petty H., Standiford T. J. Function of the urokinase receptor (CD87) in neutrophil chemotaxis. J Leukoc Biol. 1995 Nov;58(5):533–538. doi: 10.1002/jlb.58.5.533. [DOI] [PubMed] [Google Scholar]
  65. Gyetko M. R., Todd R. F., 3rd, Wilkinson C. C., Sitrin R. G. The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Invest. 1994 Apr;93(4):1380–1387. doi: 10.1172/JCI117114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Harper E. Collagenases. Annu Rev Biochem. 1980;49:1063–1078. doi: 10.1146/annurev.bi.49.070180.005215. [DOI] [PubMed] [Google Scholar]
  67. Hart I. R., Fidler I. F. An in vitro quantitative assay for tumor cell invasion. Cancer Res. 1978 Oct;38(10):3218–3224. [PubMed] [Google Scholar]
  68. Henney A. M., Wakeley P. R., Davies M. J., Foster K., Hembry R., Murphy G., Humphries S. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8154–8158. doi: 10.1073/pnas.88.18.8154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Hogan M. J., Alvarado J. Studies on the human macula. IV. Aging changes in Bruch's membrane. Arch Ophthalmol. 1967 Mar;77(3):410–420. doi: 10.1001/archopht.1967.00980020412022. [DOI] [PubMed] [Google Scholar]
  70. Hogan M. J. Role of the retinal pigment epithelium in macular disease. Trans Am Acad Ophthalmol Otolaryngol. 1972 Jan-Feb;76(1):64–80. [PubMed] [Google Scholar]
  71. Hollas W., Hoosein N., Chung L. W., Mazar A., Henkin J., Kariko K., Barnathan E. S., Boyd D. Expression of urokinase and its receptor in invasive and non-invasive prostate cancer cell lines. Thromb Haemost. 1992 Dec 7;68(6):662–666. [PubMed] [Google Scholar]
  72. Horino K., Kindezelskii A. L., Elner V. M., Hughes B. A., Petty H. R. Tumor cell invasion of model 3-dimensional matrices: demonstration of migratory pathways, collagen disruption, and intercellular cooperation. FASEB J. 2001 Apr;15(6):932–939. doi: 10.1096/fj.00-0392com. [DOI] [PubMed] [Google Scholar]
  73. Howard E. W., Bullen E. C., Banda M. J. Regulation of the autoactivation of human 72-kDa progelatinase by tissue inhibitor of metalloproteinases-2. J Biol Chem. 1991 Jul 15;266(20):13064–13069. [PubMed] [Google Scholar]
  74. Hu C. L., Crombie G., Franzblau C. A new assay for collagenolytic activity. Anal Biochem. 1978 Aug 1;88(2):638–643. doi: 10.1016/0003-2697(78)90467-0. [DOI] [PubMed] [Google Scholar]
  75. Hunt R. C., Fox A., al Pakalnis V., Sigel M. M., Kosnosky W., Choudhury P., Black E. P. Cytokines cause cultured retinal pigment epithelial cells to secrete metalloproteinases and to contract collagen gels. Invest Ophthalmol Vis Sci. 1993 Oct;34(11):3179–3186. [PubMed] [Google Scholar]
  76. Ishibashi T., Patterson R., Ohnishi Y., Inomata H., Ryan S. J. Formation of drusen in the human eye. Am J Ophthalmol. 1986 Mar 15;101(3):342–353. doi: 10.1016/0002-9394(86)90830-5. [DOI] [PubMed] [Google Scholar]
  77. Ito T., Ito M., Shiozawa J., Naito S., Kanematsu T., Sekine I. Expression of the MMP-1 in human pancreatic carcinoma: relationship with prognostic factor. Mod Pathol. 1999 Jul;12(7):669–674. [PubMed] [Google Scholar]
  78. Jackson C. J., Arkell J., Nguyen M. Rheumatoid synovial endothelial cells secrete decreased levels of tissue inhibitor of MMP (TIMP1). Ann Rheum Dis. 1998 Mar;57(3):158–161. doi: 10.1136/ard.57.3.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Jackson C., Nguyen M., Arkell J., Sambrook P. Selective matrix metalloproteinase (MMP) inhibition in rheumatoid arthritis--targetting gelatinase A activation. Inflamm Res. 2001 Apr;50(4):183–186. doi: 10.1007/s000110050743. [DOI] [PubMed] [Google Scholar]
  80. Jerdan J. A., Pepose J. S., Michels R. G., Hayashi H., de Bustros S., Sebag M., Glaser B. M. Proliferative vitreoretinopathy membranes. An immunohistochemical study. Ophthalmology. 1989 Jun;96(6):801–810. doi: 10.1016/s0161-6420(89)32818-1. [DOI] [PubMed] [Google Scholar]
  81. Kai H., Ikeda H., Yasukawa H., Kai M., Seki Y., Kuwahara F., Ueno T., Sugi K., Imaizumi T. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol. 1998 Aug;32(2):368–372. doi: 10.1016/s0735-1097(98)00250-2. [DOI] [PubMed] [Google Scholar]
  82. Kalebic T., Garbisa S., Glaser B., Liotta L. A. Basement membrane collagen: degradation by migrating endothelial cells. Science. 1983 Jul 15;221(4607):281–283. doi: 10.1126/science.6190230. [DOI] [PubMed] [Google Scholar]
  83. Kamei M., Hollyfield J. G. TIMP-3 in Bruch's membrane: changes during aging and in age-related macular degeneration. Invest Ophthalmol Vis Sci. 1999 Sep;40(10):2367–2375. [PubMed] [Google Scholar]
  84. Kanse S. M., Kost C., Wilhelm O. G., Andreasen P. A., Preissner K. T. The urokinase receptor is a major vitronectin-binding protein on endothelial cells. Exp Cell Res. 1996 May 1;224(2):344–353. doi: 10.1006/excr.1996.0144. [DOI] [PubMed] [Google Scholar]
  85. Kauffmann D. J., van Meurs J. C., Mertens D. A., Peperkamp E., Master C., Gerritsen M. E. Cytokines in vitreous humor: interleukin-6 is elevated in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 1994 Mar;35(3):900–906. [PubMed] [Google Scholar]
  86. Kessler T. L., Markus G. Epidermal growth factor and 12-tetradecanoyl phorbol 13-acetate induction of urokinase in A431 cells. Semin Thromb Hemost. 1991 Jul;17(3):217–224. doi: 10.1055/s-2007-1002612. [DOI] [PubMed] [Google Scholar]
  87. Khatib A. M., Nip J., Fallavollita L., Lehmann M., Jensen G., Brodt P. Regulation of urokinase plasminogen activator/plasmin-mediated invasion of melanoma cells by the integrin vitronectin receptor alphaVbeta3. Int J Cancer. 2001 Feb 1;91(3):300–308. doi: 10.1002/1097-0215(200002)9999:9999<::aid-ijc1055>3.3.co;2-e. [DOI] [PubMed] [Google Scholar]
  88. Kindzelskii A. L., Yang Z., Nabel G. J., Todd R. F., 3rd, Petty H. R. Ebola virus secretory glycoprotein (sGP) diminishes Fc gamma RIIIB-to-CR3 proximity on neutrophils. J Immunol. 2000 Jan 15;164(2):953–958. doi: 10.4049/jimmunol.164.2.953. [DOI] [PubMed] [Google Scholar]
  89. Kindzelskii A. L., Zhou M. J., Haugland R. P., Boxer L. A., Petty H. R. Oscillatory pericellular proteolysis and oxidant deposition during neutrophil locomotion. Biophys J. 1998 Jan;74(1):90–97. doi: 10.1016/S0006-3495(98)77770-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Kirchheimer J. C., Christ G., Binder B. R. Growth stimulation of human epidermal cells by urokinase is restricted to the intact active enzyme. Eur J Biochem. 1989 Apr 15;181(1):103–107. doi: 10.1111/j.1432-1033.1989.tb14699.x. [DOI] [PubMed] [Google Scholar]
  91. Kleiner D. E., Stetler-Stevenson W. G. Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol. 1999;43 (Suppl):S42–S51. doi: 10.1007/s002800051097. [DOI] [PubMed] [Google Scholar]
  92. Koolwijk P., Sidenius N., Peters E., Sier C. F., Hanemaaijer R., Blasi F., van Hinsbergh V. W. Proteolysis of the urokinase-type plasminogen activator receptor by metalloproteinase-12: implication for angiogenesis in fibrin matrices. Blood. 2001 May 15;97(10):3123–3131. doi: 10.1182/blood.v97.10.3123. [DOI] [PubMed] [Google Scholar]
  93. Koshelnick Y., Ehart M., Stockinger H., Binder B. R. Mechanisms of signaling through urokinase receptor and the cellular response. Thromb Haemost. 1999 Aug;82(2):305–311. [PubMed] [Google Scholar]
  94. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  95. Li W., Yanoff M., Li Y., He Z. Artificial senescence of bovine retinal pigment epithelial cells induced by near-ultraviolet in vitro. Mech Ageing Dev. 1999 Oct 22;110(3):137–155. doi: 10.1016/s0047-6374(99)00047-0. [DOI] [PubMed] [Google Scholar]
  96. Li W., Yanoff M., Li Y., He Z. Artificial senescence of bovine retinal pigment epithelial cells induced by near-ultraviolet in vitro. Mech Ageing Dev. 1999 Oct 22;110(3):137–155. doi: 10.1016/s0047-6374(99)00047-0. [DOI] [PubMed] [Google Scholar]
  97. Lijnen H. R., Arza B., Van Hoef B., Collen D., Declerck P. J. Inactivation of plasminogen activator inhibitor-1 by specific proteolysis with stromelysin-1 (MMP-3). J Biol Chem. 2000 Dec 1;275(48):37645–37650. doi: 10.1074/jbc.M006475200. [DOI] [PubMed] [Google Scholar]
  98. Lijnen H. R. Elements of the fibrinolytic system. Ann N Y Acad Sci. 2001;936:226–236. doi: 10.1111/j.1749-6632.2001.tb03511.x. [DOI] [PubMed] [Google Scholar]
  99. Limb G. A., Alam A., Earley O., Green W., Chignell A. H., Dumonde D. C. Distribution of cytokine proteins within epiretinal membranes in proliferative vitreoretinopathy. Curr Eye Res. 1994 Nov;13(11):791–798. doi: 10.3109/02713689409025133. [DOI] [PubMed] [Google Scholar]
  100. Lin W. L. Immunogold localization of extracellular matrix molecules in Bruch's membrane of the rat. Curr Eye Res. 1989 Nov;8(11):1171–1178. doi: 10.3109/02713688909000042. [DOI] [PubMed] [Google Scholar]
  101. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
  102. Lopez P. F., Grossniklaus H. E., Lambert H. M., Aaberg T. M., Capone A., Jr, Sternberg P., Jr, L'Hernault N. Pathologic features of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol. 1991 Dec 15;112(6):647–656. doi: 10.1016/s0002-9394(14)77270-8. [DOI] [PubMed] [Google Scholar]
  103. Lopez P. F., Sippy B. D., Lambert H. M., Thach A. B., Hinton D. R. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1996 Apr;37(5):855–868. [PubMed] [Google Scholar]
  104. Loskutoff D. J., Curriden S. A., Hu G., Deng G. Regulation of cell adhesion by PAI-1. APMIS. 1999 Jan;107(1):54–61. doi: 10.1111/j.1699-0463.1999.tb01526.x. [DOI] [PubMed] [Google Scholar]
  105. Lund L. R., Rømer J., Rønne E., Ellis V., Blasi F., Danø K. Urokinase-receptor biosynthesis, mRNA level and gene transcription are increased by transforming growth factor beta 1 in human A549 lung carcinoma cells. EMBO J. 1991 Nov;10(11):3399–3407. doi: 10.1002/j.1460-2075.1991.tb04904.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Löffler K. U., Lee W. R. Basal linear deposit in the human macula. Graefes Arch Clin Exp Ophthalmol. 1986;224(6):493–501. doi: 10.1007/BF02154735. [DOI] [PubMed] [Google Scholar]
  107. Maher R. J., Cao D., Boxer L. A., Petty H. R. Simultaneous calcium-dependent delivery of neutrophil lactoferrin and reactive oxygen metabolites to erythrocyte targets: evidence supporting granule-dependent triggering of superoxide deposition. J Cell Physiol. 1993 Aug;156(2):226–234. doi: 10.1002/jcp.1041560203. [DOI] [PubMed] [Google Scholar]
  108. Matrisian L. M. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990 Apr;6(4):121–125. doi: 10.1016/0168-9525(90)90126-q. [DOI] [PubMed] [Google Scholar]
  109. May A. E., Neumann F. J., Schömig A., Preissner K. T. VLA-4 (alpha(4)beta(1)) engagement defines a novel activation pathway for beta(2) integrin-dependent leukocyte adhesion involving the urokinase receptor. Blood. 2000 Jul 15;96(2):506–513. [PubMed] [Google Scholar]
  110. McCawley L. J., Matrisian L. M. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today. 2000 Apr;6(4):149–156. doi: 10.1016/s1357-4310(00)01686-5. [DOI] [PubMed] [Google Scholar]
  111. McCawley L. J., Matrisian L. M. Tumor progression: defining the soil round the tumor seed. Curr Biol. 2001 Jan 9;11(1):R25–R27. doi: 10.1016/s0960-9822(00)00038-5. [DOI] [PubMed] [Google Scholar]
  112. McMillan W. D., Pearce W. H. Increased plasma levels of metalloproteinase-9 are associated with abdominal aortic aneurysms. J Vasc Surg. 1999 Jan;29(1):122–129. doi: 10.1016/s0741-5214(99)70363-0. [DOI] [PubMed] [Google Scholar]
  113. McNeill H., Jensen P. J. A high-affinity receptor for urokinase plasminogen activator on human keratinocytes: characterization and potential modulation during migration. Cell Regul. 1990 Oct;1(11):843–852. doi: 10.1091/mbc.1.11.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. McQuibban G. A., Gong J. H., Tam E. M., McCulloch C. A., Clark-Lewis I., Overall C. M. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science. 2000 Aug 18;289(5482):1202–1206. doi: 10.1126/science.289.5482.1202. [DOI] [PubMed] [Google Scholar]
  115. Mignatti P., Mazzieri R., Rifkin D. B. Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor. J Cell Biol. 1991 Jun;113(5):1193–1201. doi: 10.1083/jcb.113.5.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Miles L. A., Levin E. G., Plescia J., Collen D., Plow E. F. Plasminogen receptors, urokinase receptors, and their modulation on human endothelial cells. Blood. 1988 Aug;72(2):628–635. [PubMed] [Google Scholar]
  117. Min H. Y., Semnani R., Mizukami I. F., Watt K., Todd R. F., 3rd, Liu D. Y. cDNA for Mo3, a monocyte activation antigen, encodes the human receptor for urokinase plasminogen activator. J Immunol. 1992 Jun 1;148(11):3636–3642. [PubMed] [Google Scholar]
  118. Monsky W. L., Lin C. Y., Aoyama A., Kelly T., Akiyama S. K., Mueller S. C., Chen W. T. A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res. 1994 Nov 1;54(21):5702–5710. [PubMed] [Google Scholar]
  119. Montgomery A. M., De Clerck Y. A., Langley K. E., Reisfeld R. A., Mueller B. M. Melanoma-mediated dissolution of extracellular matrix: contribution of urokinase-dependent and metalloproteinase-dependent proteolytic pathways. Cancer Res. 1993 Feb 1;53(3):693–700. [PubMed] [Google Scholar]
  120. Montgomery A. M., Reisfeld R. A., Cheresh D. A. Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8856–8860. doi: 10.1073/pnas.91.19.8856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Morino I., Hiscott P., McKechnie N., Grierson I. Variation in epiretinal membrane components with clinical duration of the proliferative tissue. Br J Ophthalmol. 1990 Jul;74(7):393–399. doi: 10.1136/bjo.74.7.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Moscatelli D., Jaffe E., Rifkin D. B. Tetradecanoyl phorbol acetate stimulates latent collagenase production by cultured human endothelial cells. Cell. 1980 Jun;20(2):343–351. doi: 10.1016/0092-8674(80)90620-0. [DOI] [PubMed] [Google Scholar]
  123. Murphy G., Gavrilovic J. Proteolysis and cell migration: creating a path? Curr Opin Cell Biol. 1999 Oct;11(5):614–621. doi: 10.1016/s0955-0674(99)00022-8. [DOI] [PubMed] [Google Scholar]
  124. Murray G. I., Duncan M. E., O'Neil P., McKay J. A., Melvin W. T., Fothergill J. E. Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J Pathol. 1998 Jul;185(3):256–261. doi: 10.1002/(SICI)1096-9896(199807)185:3<256::AID-PATH115>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  125. Murray G. I., Duncan M. E., O'Neil P., Melvin W. T., Fothergill J. E. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med. 1996 Apr;2(4):461–462. doi: 10.1038/nm0496&ndash;461. [DOI] [PubMed] [Google Scholar]
  126. Nagase H., Woessner J. F., Jr Matrix metalloproteinases. J Biol Chem. 1999 Jul 30;274(31):21491–21494. doi: 10.1074/jbc.274.31.21491. [DOI] [PubMed] [Google Scholar]
  127. Naito K., Takahashi M., Kushida K., Suzuki M., Ohishi T., Miura M., Inoue T., Nagano A. Measurement of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-1 (TIMP-1) in patients with knee osteoarthritis: comparison with generalized osteoarthritis. Rheumatology (Oxford) 1999 Jun;38(6):510–515. doi: 10.1093/rheumatology/38.6.510. [DOI] [PubMed] [Google Scholar]
  128. Newman K. M., Ogata Y., Malon A. M., Irizarry E., Gandhi R. H., Nagase H., Tilson M. D. Identification of matrix metalloproteinases 3 (stromelysin-1) and 9 (gelatinase B) in abdominal aortic aneurysm. Arterioscler Thromb. 1994 Aug;14(8):1315–1320. doi: 10.1161/01.atv.14.8.1315. [DOI] [PubMed] [Google Scholar]
  129. Nguyen M., Arkell J., Jackson C. J. Active and tissue inhibitor of matrix metalloproteinase-free gelatinase B accumulates within human microvascular endothelial vesicles. J Biol Chem. 1998 Feb 27;273(9):5400–5404. doi: 10.1074/jbc.273.9.5400. [DOI] [PubMed] [Google Scholar]
  130. Nguyen M., Arkell J., Jackson C. J. Human endothelial gelatinases and angiogenesis. Int J Biochem Cell Biol. 2001 Oct;33(10):960–970. doi: 10.1016/s1357-2725(01)00007-3. [DOI] [PubMed] [Google Scholar]
  131. Niedbala M. J., Stein M. Tumor necrosis factor induction of urokinase-type plasminogen activator in human endothelial cells. Biomed Biochim Acta. 1991;50(4-6):427–436. [PubMed] [Google Scholar]
  132. Odekon L. E., Sato Y., Rifkin D. B. Urokinase-type plasminogen activator mediates basic fibroblast growth factor-induced bovine endothelial cell migration independent of its proteolytic activity. J Cell Physiol. 1992 Feb;150(2):258–263. doi: 10.1002/jcp.1041500206. [DOI] [PubMed] [Google Scholar]
  133. Oh H., Takagi H., Takagi C., Suzuma K., Otani A., Ishida K., Matsumura M., Ogura Y., Honda Y. The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1999 Aug;40(9):1891–1898. [PubMed] [Google Scholar]
  134. Okamoto I., Kawano Y., Tsuiki H., Sasaki J., Nakao M., Matsumoto M., Suga M., Ando M., Nakajima M., Saya H. CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. Oncogene. 1999 Feb 18;18(7):1435–1446. doi: 10.1038/sj.onc.1202447. [DOI] [PubMed] [Google Scholar]
  135. Olson D., Pöllänen J., Høyer-Hansen G., Rønne E., Sakaguchi K., Wun T. C., Appella E., Danø K., Blasi F. Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. J Biol Chem. 1992 May 5;267(13):9129–9133. [PubMed] [Google Scholar]
  136. Olson M. W., Gervasi D. C., Mobashery S., Fridman R. Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem. 1997 Nov 21;272(47):29975–29983. doi: 10.1074/jbc.272.47.29975. [DOI] [PubMed] [Google Scholar]
  137. Opdenakker G., Masure S., Grillet B., Van Damme J. Cytokine-mediated regulation of human leukocyte gelatinases and role in arthritis. Lymphokine Cytokine Res. 1991 Aug;10(4):317–324. [PubMed] [Google Scholar]
  138. Opdenakker G., Van den Steen P. E., Dubois B., Nelissen I., Van Coillie E., Masure S., Proost P., Van Damme J. Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol. 2001 Jun;69(6):851–859. [PubMed] [Google Scholar]
  139. Otani A., Takagi H., Oh H., Koyama S., Matsumura M., Honda Y. Expressions of angiopoietins and Tie2 in human choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1999 Aug;40(9):1912–1920. [PubMed] [Google Scholar]
  140. Penfold P. L., Killingsworth M. C., Sarks S. H. Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol. 1985;223(2):69–76. doi: 10.1007/BF02150948. [DOI] [PubMed] [Google Scholar]
  141. Penfold P. L., Provis J. M., Billson F. A. Age-related macular degeneration: ultrastructural studies of the relationship of leucocytes to angiogenesis. Graefes Arch Clin Exp Ophthalmol. 1987;225(1):70–76. doi: 10.1007/BF02155808. [DOI] [PubMed] [Google Scholar]
  142. Pepper M. S., Montesano R., Mandriota S. J., Orci L., Vassalli J. D. Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein. 1996;49(1-3):138–162. doi: 10.1159/000468622. [DOI] [PubMed] [Google Scholar]
  143. Petty H. R., Francis J. W., Todd R. F., 3rd, Petrequin P., Boxer L. A. Neutrophil C3bi receptors: formation of membrane clusters during cell triggering requires intracellular granules. J Cell Physiol. 1987 Nov;133(2):235-42, 256. doi: 10.1002/jcp.1041330206. [DOI] [PubMed] [Google Scholar]
  144. Plesner T., Ploug M., Ellis V., Rønne E., Høyer-Hansen G., Wittrup M., Pedersen T. L., Tscherning T., Danø K., Hansen N. E. The receptor for urokinase-type plasminogen activator and urokinase is translocated from two distinct intracellular compartments to the plasma membrane on stimulation of human neutrophils. Blood. 1994 Feb 1;83(3):808–815. [PubMed] [Google Scholar]
  145. Ploug M., Rønne E., Behrendt N., Jensen A. L., Blasi F., Danø K. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem. 1991 Jan 25;266(3):1926–1933. [PubMed] [Google Scholar]
  146. Polverini P. J., Cotran P. S., Gimbrone M. A., Jr, Unanue E. R. Activated macrophages induce vascular proliferation. Nature. 1977 Oct 27;269(5631):804–806. doi: 10.1038/269804a0. [DOI] [PubMed] [Google Scholar]
  147. Poste G., Doll J., Hart I. R., Fidler I. J. In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res. 1980 May;40(5):1636–1644. [PubMed] [Google Scholar]
  148. Preece G., Murphy G., Ager A. Metalloproteinase-mediated regulation of L-selectin levels on leucocytes. J Biol Chem. 1996 May 17;271(20):11634–11640. doi: 10.1074/jbc.271.20.11634. [DOI] [PubMed] [Google Scholar]
  149. Reich R., Thompson E. W., Iwamoto Y., Martin G. R., Deason J. R., Fuller G. C., Miskin R. Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membranes by metastatic cells. Cancer Res. 1988 Jun 15;48(12):3307–3312. [PubMed] [Google Scholar]
  150. Resnati M., Guttinger M., Valcamonica S., Sidenius N., Blasi F., Fazioli F. Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect. EMBO J. 1996 Apr 1;15(7):1572–1582. [PMC free article] [PubMed] [Google Scholar]
  151. Reuning U., Magdolen V., Wilhelm O., Fischer K., Lutz V., Graeff H., Schmitt M. Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis (review). Int J Oncol. 1998 Nov;13(5):893–906. doi: 10.3892/ijo.13.5.893. [DOI] [PubMed] [Google Scholar]
  152. Rizzolo L. J. Basement membrane stimulates the polarized distribution of integrins but not the Na,K-ATPase in the retinal pigment epithelium. Cell Regul. 1991 Nov;2(11):939–949. doi: 10.1091/mbc.2.11.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Ross G. D. Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/alphaMbeta2-integrin glycoprotein. Crit Rev Immunol. 2000;20(3):197–222. [PubMed] [Google Scholar]
  154. Ruiz A., Brett P., Bok D. TIMP-3 is expressed in the human retinal pigment epithelium. Biochem Biophys Res Commun. 1996 Sep 13;226(2):467–474. doi: 10.1006/bbrc.1996.1379. [DOI] [PubMed] [Google Scholar]
  155. SPENCER W. H. MACULAR DISEASES: PATHOGENESIS. LIGHT MICROSCOPY. Trans Am Acad Ophthalmol Otolaryngol. 1965 Jul-Aug;69:662–667. [PubMed] [Google Scholar]
  156. Salo T., Liotta L. A., Tryggvason K. Purification and characterization of a murine basement membrane collagen-degrading enzyme secreted by metastatic tumor cells. J Biol Chem. 1983 Mar 10;258(5):3058–3063. [PubMed] [Google Scholar]
  157. Sarks S. H. Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol. 1976 May;60(5):324–341. doi: 10.1136/bjo.60.5.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Saxe S. J., Grossniklaus H. E., Lopez P. F., Lambert H. M., Sternberg P., Jr, L'Hernault N. Ultrastructural features of surgically excised subretinal neovascular membranes in the ocular histoplasmosis syndrome. Arch Ophthalmol. 1993 Jan;111(1):88–95. doi: 10.1001/archopht.1993.01090010092033. [DOI] [PubMed] [Google Scholar]
  159. Schönbeck U., Mach F., Libby P. Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol. 1998 Oct 1;161(7):3340–3346. [PubMed] [Google Scholar]
  160. Schönfeld C. L. Metalloproteinase Stromelysin. Expression in humanem retinalem Pigmentepithel (RPE). Ophthalmologe. 1997 Sep;94(9):629–633. doi: 10.1007/s003470050172. [DOI] [PubMed] [Google Scholar]
  161. Seftor R. E., Seftor E. A., Gehlsen K. R., Stetler-Stevenson W. G., Brown P. D., Ruoslahti E., Hendrix M. J. Role of the alpha v beta 3 integrin in human melanoma cell invasion. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1557–1561. doi: 10.1073/pnas.89.5.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Simon D. I., Wei Y., Zhang L., Rao N. K., Xu H., Chen Z., Liu Q., Rosenberg S., Chapman H. A. Identification of a urokinase receptor-integrin interaction site. Promiscuous regulator of integrin function. J Biol Chem. 2000 Apr 7;275(14):10228–10234. doi: 10.1074/jbc.275.14.10228. [DOI] [PubMed] [Google Scholar]
  163. Sirén V., Immonen I., Cantell K., Vaheri A. Alpha- and gamma-interferon inhibit plasminogen activator inhibitor-1 gene expression in human retinal pigment epithelial cells. Ophthalmic Res. 1994;26(1):1–7. doi: 10.1159/000267367. [DOI] [PubMed] [Google Scholar]
  164. Sirén V., Myöhänen H., Vaheri A., Immonen I. Transforming growth factor beta induces urokinase receptor expression in cultured retinal pigment epithelial cells. Ophthalmic Res. 1999;31(3):184–191. doi: 10.1159/000055531. [DOI] [PubMed] [Google Scholar]
  165. Sirén V., Stephens R. W., Salonen E. M., Vaheri A., Summanen P., Immonen I. Retinal pigment epithelial cells secrete urokinase-type plasminogen activator and its inhibitor PAI-1. Ophthalmic Res. 1992;24(4):203–212. doi: 10.1159/000267169. [DOI] [PubMed] [Google Scholar]
  166. Sitrin R. G., Pan P. M., Harper H. A., Blackwood R. A., Todd R. F., 3rd Urokinase receptor (CD87) aggregation triggers phosphoinositide hydrolysis and intracellular calcium mobilization in mononuclear phagocytes. J Immunol. 1999 Dec 1;163(11):6193–6200. [PubMed] [Google Scholar]
  167. Sitrin R. G., Todd R. F., 3rd, Albrecht E., Gyetko M. R. The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J Clin Invest. 1996 Apr 15;97(8):1942–1951. doi: 10.1172/JCI118626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Smiddy W. E., Fine S. L. Prognosis of patients with bilateral macular drusen. Ophthalmology. 1984 Mar;91(3):271–277. doi: 10.1016/s0161-6420(84)34309-3. [DOI] [PubMed] [Google Scholar]
  169. Stahl A., Mueller B. M. Melanoma cell migration on vitronectin: regulation by components of the plasminogen activation system. Int J Cancer. 1997 Mar 28;71(1):116–122. doi: 10.1002/(sici)1097-0215(19970328)71:1<116::aid-ijc19>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  170. Stetler-Stevenson W. G. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999 May;103(9):1237–1241. doi: 10.1172/JCI6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Stoppelli M. P., Corti A., Soffientini A., Cassani G., Blasi F., Assoian R. K. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4939–4943. doi: 10.1073/pnas.82.15.4939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Sunderkötter C., Steinbrink K., Goebeler M., Bhardwaj R., Sorg C. Macrophages and angiogenesis. J Leukoc Biol. 1994 Mar;55(3):410–422. doi: 10.1002/jlb.55.3.410. [DOI] [PubMed] [Google Scholar]
  173. Todd R. F., 3rd, Nadler L. M., Schlossman S. F. Antigens on human monocytes identified by monoclonal antibodies. J Immunol. 1981 Apr;126(4):1435–1442. [PubMed] [Google Scholar]
  174. Todd R. F., 3rd, Roach J. A., Arnaout M. A. The modulated expression of Mo5, a human myelomonocytic plasma membrane antigen. Blood. 1985 Apr;65(4):964–973. [PubMed] [Google Scholar]
  175. Towle M. J., Lee A., Maduakor E. C., Schwartz C. E., Bridges A. J., Littlefield B. A. Inhibition of urokinase by 4-substituted benzo[b]thiophene-2-carboxamidines: an important new class of selective synthetic urokinase inhibitor. Cancer Res. 1993 Jun 1;53(11):2553–2559. [PubMed] [Google Scholar]
  176. Tripathi R. C., Tripathi B. J., Park J. K. Localization of urokinase-type plasminogen activator in human eyes: an immunocytochemical study. Exp Eye Res. 1990 Nov;51(5):545–552. doi: 10.1016/0014-4835(90)90085-9. [DOI] [PubMed] [Google Scholar]
  177. Unanue E. R. Secretory function of mononuclear phagocytes: a review. Am J Pathol. 1976 May;83(2):396–418. [PMC free article] [PubMed] [Google Scholar]
  178. Uster P. S., Pagano R. E. Resonance energy transfer microscopy: observations of membrane-bound fluorescent probes in model membranes and in living cells. J Cell Biol. 1986 Oct;103(4):1221–1234. doi: 10.1083/jcb.103.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Vranka J. A., Johnson E., Zhu X., Shepardson A., Alexander J. P., Bradley J. M., Wirtz M. K., Weleber R. G., Klein M. L., Acott T. S. Discrete expression and distribution pattern of TIMP-3 in the human retina and choroid. Curr Eye Res. 1997 Feb;16(2):102–110. doi: 10.1076/ceyr.16.2.102.5086. [DOI] [PubMed] [Google Scholar]
  180. Väisänen A., Kallioinen M., von Dickhoff K., Laatikainen L., Höyhtyä M., Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 (MMP-2) immunoreactive protein--a new prognostic marker in uveal melanoma? J Pathol. 1999 May;188(1):56–62. doi: 10.1002/(SICI)1096-9896(199905)188:1<56::AID-PATH304>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  181. Walsh D. A. Angiogenesis and arthritis. Rheumatology (Oxford) 1999 Feb;38(2):103–112. doi: 10.1093/rheumatology/38.2.103. [DOI] [PubMed] [Google Scholar]
  182. Weber B. H., Vogt G., Pruett R. C., Stöhr H., Felbor U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nat Genet. 1994 Dec;8(4):352–356. doi: 10.1038/ng1294-352. [DOI] [PubMed] [Google Scholar]
  183. Weber B. H., Vogt G., Wolz W., Ives E. J., Ewing C. C. Sorsby's fundus dystrophy is genetically linked to chromosome 22q13-qter. Nat Genet. 1994 Jun;7(2):158–161. doi: 10.1038/ng0694-158. [DOI] [PubMed] [Google Scholar]
  184. Wei Y., Waltz D. A., Rao N., Drummond R. J., Rosenberg S., Chapman H. A. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem. 1994 Dec 23;269(51):32380–32388. [PubMed] [Google Scholar]
  185. Werb Z., Gordon S. Elastase secretion by stimulated macrophages. Characterization and regulation. J Exp Med. 1975 Aug 1;142(2):361–377. doi: 10.1084/jem.142.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Wessendorf M. W., Appel N. M., Elde R. Simultaneous observation of fluorescent retrogradely labeled neurons and the immunofluorescently labeled fibers apposing them using Fluoro-Gold and antisera labeled with the blue fluorochrome 7-amino-4-methylcoumarin-3-acetic acid (AMCA). Neurosci Lett. 1987 Nov 23;82(2):121–126. doi: 10.1016/0304-3940(87)90115-7. [DOI] [PubMed] [Google Scholar]
  187. Wright J. K., Cawston T. E., Hazleman B. L. Transforming growth factor beta stimulates the production of the tissue inhibitor of metalloproteinases (TIMP) by human synovial and skin fibroblasts. Biochim Biophys Acta. 1991 Sep 3;1094(2):207–210. doi: 10.1016/0167-4889(91)90010-u. [DOI] [PubMed] [Google Scholar]
  188. Xue W., Kindzelskii A. L., Todd R. F., 3rd, Petty H. R. Physical association of complement receptor type 3 and urokinase-type plasminogen activator receptor in neutrophil membranes. J Immunol. 1994 May 1;152(9):4630–4640. [PubMed] [Google Scholar]
  189. Yang Z., Cohen R. L., Lui G. M., Lawrence D. A., Shuman M. A. Thrombin increases expression of urokinase receptor by activation of the thrombin receptor. Invest Ophthalmol Vis Sci. 1995 Oct;36(11):2254–2261. [PubMed] [Google Scholar]
  190. Ye S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol. 2000 Dec;19(7):623–629. doi: 10.1016/s0945-053x(00)00102-5. [DOI] [PubMed] [Google Scholar]
  191. Zhou M. J., Poo H., Todd R. F., 3rd, Petty H. R. Surface-bound immune complexes trigger transmembrane proximity between complement receptor type 3 and the neutrophil's cortical microfilaments. J Immunol. 1992 Jun 1;148(11):3550–3553. [PubMed] [Google Scholar]
  192. Zhou M. J., Todd R. F., 3rd, Petty H. R. Detection of transmembrane linkages between immunoglobulin or complement receptors and the neutrophil's cortical microfilaments by resonance energy transfer microscopy. J Mol Biol. 1991 Mar 20;218(2):263–268. doi: 10.1016/0022-2836(91)90709-f. [DOI] [PubMed] [Google Scholar]
  193. Zhou M., Todd R. F., 3rd, van de Winkel J. G., Petty H. R. Cocapping of the leukoadhesin molecules complement receptor type 3 and lymphocyte function-associated antigen-1 with Fc gamma receptor III on human neutrophils. Possible role of lectin-like interactions. J Immunol. 1993 Apr 1;150(7):3030–3041. [PubMed] [Google Scholar]
  194. Zucker S., Lysik R. M., Zarrabi M. H., Greenwald R. A., Gruber B., Tickle S. P., Baker T. S., Docherty A. J. Elevated plasma stromelysin levels in arthritis. J Rheumatol. 1994 Dec;21(12):2329–2333. [PubMed] [Google Scholar]

Articles from Transactions of the American Ophthalmological Society are provided here courtesy of American Ophthalmological Society

RESOURCES