Abstract
PURPOSE: This study tested the hypothesis that the function of the glutamate transporter in retinal Müller cells is compromised early in the course of diabetes by a mechanism involving oxidation. Dysfunction of this transporter, which removes glutamate from the extracellular space, may play a critical role in the disruption of glutamate homeostasis that occurs in the diabetic retina. Because glutamate is toxic to retinal neurons and is likely to exacerbate oxidative stress, elucidation of the mechanisms by which diabetes elevates the concentration of this amino acid may help to better understand the pathogenesis of diabetic retinopathy. METHODS: Müller cells were freshly isolated from normal rats and those made diabetic by streptozotocin injection. The activity of the Müller cell glutamate transporter, which is electrogenic, was monitored via the perforated-patch configuration of the patch-clamp technique. RESULTS: Four weeks after the onset of hyperglycemia, dysfunction of the Müller cell glutamate transporter was detected (P = .005). After 13 weeks of streptozotocin-induced diabetes, the activity of this transporter was decreased by 67% (P = .001). Consistent with oxidation causing this dysfunction, exposure to a disulfide-reducing agent rapidly restored the activity of this transporter in Müller cells from diabetic retinas. CONCLUSIONS: Soon after the onset of experimental diabetes, the function of the glutamate transporter in Müller cells is decreased by a mechanism that is likely to involve oxidation. The demonstration that the activity of this transporter can be rapidly restored raises the possibility that targeting this molecule for therapeutic intervention may restore glutamate homeostasis and, thereby, ameliorate sight-threatening complications of diabetic retinopathy.
Full Text
The Full Text of this article is available as a PDF (300.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agardh E., Yeh H. H., Herrmann R., Puro D. G. gamma-Aminobutyric acid-mediated inhibition at cholinergic synapses formed by cultured retinal neurons. Brain Res. 1985 Mar 25;330(2):323–328. doi: 10.1016/0006-8993(85)90692-4. [DOI] [PubMed] [Google Scholar]
- Alder V. A., Su E. N., Yu D. Y., Cringle S. J., Yu P. K. Diabetic retinopathy: early functional changes. Clin Exp Pharmacol Physiol. 1997 Sep-Oct;24(9-10):785–788. doi: 10.1111/j.1440-1681.1997.tb02133.x. [DOI] [PubMed] [Google Scholar]
- Ambati J., Chalam K. V., Chawla D. K., D'Angio C. T., Guillet E. G., Rose S. J., Vanderlinde R. E., Ambati B. K. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol. 1997 Sep;115(9):1161–1166. doi: 10.1001/archopht.1997.01100160331011. [DOI] [PubMed] [Google Scholar]
- BLOODWORTH J. M., Jr Diabetic retinopathy. Diabetes. 1962 Jan-Feb;11:1–22. [PubMed] [Google Scholar]
- Barber A. J., Antonetti D. A., Gardner T. W. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3561–3568. [PubMed] [Google Scholar]
- Barber A. J., Lieth E., Khin S. A., Antonetti D. A., Buchanan A. G., Gardner T. W. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998 Aug 15;102(4):783–791. doi: 10.1172/JCI2425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barber A. J., Nakamura M., Wolpert E. B., Reiter C. E., Seigel G. M., Antonetti D. A., Gardner T. W. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem. 2001 Jul 6;276(35):32814–32821. doi: 10.1074/jbc.M104738200. [DOI] [PubMed] [Google Scholar]
- Barry P. H. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J Neurosci Methods. 1994 Jan;51(1):107–116. doi: 10.1016/0165-0270(94)90031-0. [DOI] [PubMed] [Google Scholar]
- Bazan N. G., Gordon W. C., Marcheselli V. L., Lukiw W. J., Duhault J., Koenig-Berard E., Linn D. M., DeCoster M. A., Mukherjee P. K. Experimental models and their use in studies of diabetic retinal microangiopathy. Therapie. 1997 Sep-Oct;52(5):447–451. [PubMed] [Google Scholar]
- Billups B., Rossi D., Attwell D. Anion conductance behavior of the glutamate uptake carrier in salamander retinal glial cells. J Neurosci. 1996 Nov 1;16(21):6722–6731. doi: 10.1523/JNEUROSCI.16-21-06722.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bresnick G. H. Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol. 1986 Jul;104(7):989–990. doi: 10.1001/archopht.1986.01050190047037. [DOI] [PubMed] [Google Scholar]
- Bresnick G. H., Palta M. Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. Arch Ophthalmol. 1987 Jul;105(7):929–933. doi: 10.1001/archopht.1987.01060070065030. [DOI] [PubMed] [Google Scholar]
- Brew H., Attwell D. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. 1987 Jun 25-Jul 1Nature. 327(6124):707–709. doi: 10.1038/327707a0. [DOI] [PubMed] [Google Scholar]
- Brew H., Gray P. T., Mobbs P., Attwell D. Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature. 1986 Dec 4;324(6096):466–468. doi: 10.1038/324466a0. [DOI] [PubMed] [Google Scholar]
- Bridges R. J., Stanley M. S., Anderson M. W., Cotman C. W., Chamberlin A. R. Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer. J Med Chem. 1991 Feb;34(2):717–725. doi: 10.1021/jm00106a037. [DOI] [PubMed] [Google Scholar]
- Brinchmann-Hansen O., Bangstad H. J., Hultgren S., Fletcher R., Dahl-Jørgensen K., Hanssen K. F., Sandvik L. Psychophysical visual function, retinopathy, and glycemic control in insulin-dependent diabetics with normal visual acuity. Acta Ophthalmol (Copenh) 1993 Apr;71(2):230–237. doi: 10.1111/j.1755-3768.1993.tb04996.x. [DOI] [PubMed] [Google Scholar]
- Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813–820. doi: 10.1038/414813a. [DOI] [PubMed] [Google Scholar]
- Brunette J. R., Lafond G. Electroretinographic evaluation of diabetic retinopathy: sensitivity of amplitude and time of response. Can J Ophthalmol. 1983 Oct;18(6):285–289. [PubMed] [Google Scholar]
- Caputo S., Di Leo M. A., Falsini B., Ghirlanda G., Porciatti V., Minella A., Greco A. V. Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. Diabetes Care. 1990 Apr;13(4):412–418. doi: 10.2337/diacare.13.4.412. [DOI] [PubMed] [Google Scholar]
- Castillo J., Dávalos A., Noya M. Progression of ischaemic stroke and excitotoxic aminoacids. Lancet. 1997 Jan 11;349(9045):79–83. doi: 10.1016/S0140-6736(96)04453-4. [DOI] [PubMed] [Google Scholar]
- Coupland S. G. A comparison of oscillatory potential and pattern electroretinogram measures in diabetic retinopathy. Doc Ophthalmol. 1987 Jun;66(3):207–218. doi: 10.1007/BF00145234. [DOI] [PubMed] [Google Scholar]
- Cunha-Vaz J., Faria de Abreu J. R., Campos A. J. Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol. 1975 Nov;59(11):649–656. doi: 10.1136/bjo.59.11.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Della Sala S., Bertoni G., Somazzi L., Stubbe F., Wilkins A. J. Impaired contrast sensitivity in diabetic patients with and without retinopathy: a new technique for rapid assessment. Br J Ophthalmol. 1985 Feb;69(2):136–142. doi: 10.1136/bjo.69.2.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derouiche A., Rauen T. Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res. 1995 Sep 1;42(1):131–143. doi: 10.1002/jnr.490420115. [DOI] [PubMed] [Google Scholar]
- Distler C., Dreher Z. Glia cells of the monkey retina--II. Müller cells. Vision Res. 1996 Aug;36(16):2381–2394. doi: 10.1016/0042-6989(96)00005-3. [DOI] [PubMed] [Google Scholar]
- Do carmo A., Ramos P., Reis A., Proença R., Cunha-vaz J. G. Breakdown of the inner and outer blood retinal barrier in streptozotocin-induced diabetes. Exp Eye Res. 1998 Nov;67(5):569–575. doi: 10.1006/exer.1998.0546. [DOI] [PubMed] [Google Scholar]
- Dreher Z., Robinson S. R., Distler C. Müller cells in vascular and avascular retinae: a survey of seven mammals. J Comp Neurol. 1992 Sep 1;323(1):59–80. doi: 10.1002/cne.903230106. [DOI] [PubMed] [Google Scholar]
- Eddleston M., Mucke L. Molecular profile of reactive astrocytes--implications for their role in neurologic disease. Neuroscience. 1993 May;54(1):15–36. doi: 10.1016/0306-4522(93)90380-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Effect of 6 months of strict metabolic control on eye and kidney function in insulin-dependent diabetics with background retinopathy. Steno study group. Lancet. 1982 Jan 16;1(8264):121–124. [PubMed] [Google Scholar]
- Eliasof S., Jahr C. E. Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4153–4158. doi: 10.1073/pnas.93.9.4153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis E. A., Grant M. B., Murray F. T., Wachowski M. B., Guberski D. L., Kubilis P. S., Lutty G. A. Increased NADH oxidase activity in the retina of the BBZ/Wor diabetic rat. Free Radic Biol Med. 1998 Jan 1;24(1):111–120. doi: 10.1016/s0891-5849(97)00202-5. [DOI] [PubMed] [Google Scholar]
- Ellis E. A., Guberski D. L., Somogyi-Mann M., Grant M. B. Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/Wor diabetic rat. Free Radic Biol Med. 2000 Jan 1;28(1):91–101. doi: 10.1016/s0891-5849(99)00216-6. [DOI] [PubMed] [Google Scholar]
- Falsini B., Porciatti V., Scalia G., Caputo S., Minnella A., Di Leo M. A., Ghirlanda G. Steady-state pattern electroretinogram in insulin-dependent diabetics with no or minimal retinopathy. Doc Ophthalmol. 1989 Oct;73(2):193–200. doi: 10.1007/BF00155037. [DOI] [PubMed] [Google Scholar]
- Frank R. N. On the pathogenesis of diabetic retinopathy. Ophthalmology. 1984 Jun;91(6):626–634. doi: 10.1016/s0161-6420(84)34258-0. [DOI] [PubMed] [Google Scholar]
- Goldstein I. M., Ostwald P., Roth S. Nitric oxide: a review of its role in retinal function and disease. Vision Res. 1996 Sep;36(18):2979–2994. doi: 10.1016/0042-6989(96)00017-x. [DOI] [PubMed] [Google Scholar]
- Holopigian K., Seiple W., Lorenzo M., Carr R. A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 1992 Sep;33(10):2773–2780. [PubMed] [Google Scholar]
- Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyvärinen L., Laurinen P., Rovamo J. Contrast sensitivity in evaluation of visual impairment due to diabetes. Acta Ophthalmol (Copenh) 1983 Feb;61(1):94–101. doi: 10.1111/j.1755-3768.1983.tb01399.x. [DOI] [PubMed] [Google Scholar]
- Juen S., Kieselbach G. F. Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol. 1990 Mar;108(3):372–375. doi: 10.1001/archopht.1990.01070050070033. [DOI] [PubMed] [Google Scholar]
- Kowluru R. A., Engerman R. L., Case G. L., Kern T. S. Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int. 2001 Apr;38(5):385–390. doi: 10.1016/s0197-0186(00)00112-1. [DOI] [PubMed] [Google Scholar]
- Kowluru R. A., Kern T. S., Engerman R. L., Armstrong D. Abnormalities of retinal metabolism in diabetes or experimental galactosemia. III. Effects of antioxidants. Diabetes. 1996 Sep;45(9):1233–1237. doi: 10.2337/diab.45.9.1233. [DOI] [PubMed] [Google Scholar]
- Kusaka S., Kapousta-Bruneau N. V., Puro D. G. Plasma-induced changes in the physiology of mammalian retinal glial cells: role of glutamate. Glia. 1999 Feb 1;25(3):205–215. doi: 10.1002/(sici)1098-1136(19990201)25:3<205::aid-glia1>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
- Kusaka S., Puro D. G. Intracellular ATP activates inwardly rectifying K+ channels in human and monkey retinal Müller (glial) cells. J Physiol. 1997 May 1;500(Pt 3):593–604. doi: 10.1113/jphysiol.1997.sp022045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUCAS D. R., NEWHOUSE J. P. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol. 1957 Aug;58(2):193–201. doi: 10.1001/archopht.1957.00940010205006. [DOI] [PubMed] [Google Scholar]
- Li Q., Zemel E., Miller B., Perlman I. Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res. 2002 May;74(5):615–625. doi: 10.1006/exer.2002.1170. [DOI] [PubMed] [Google Scholar]
- Lieth E., Barber A. J., Xu B., Dice C., Ratz M. J., Tanase D., Strother J. M. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 1998 May;47(5):815–820. doi: 10.2337/diabetes.47.5.815. [DOI] [PubMed] [Google Scholar]
- Lieth E., Gardner T. W., Barber A. J., Antonetti D. A., Penn State Retina Research Group Retinal neurodegeneration: early pathology in diabetes. Clin Exp Ophthalmol. 2000 Feb;28(1):3–8. doi: 10.1046/j.1442-9071.2000.00222.x. [DOI] [PubMed] [Google Scholar]
- Lieth E., LaNoue K. F., Antonetti D. A., Ratz M. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res. 2000 Jun;70(6):723–730. doi: 10.1006/exer.2000.0840. [DOI] [PubMed] [Google Scholar]
- Lipton S. A., Rosenberg P. A. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994 Mar 3;330(9):613–622. doi: 10.1056/NEJM199403033300907. [DOI] [PubMed] [Google Scholar]
- Mizutani M., Gerhardinger C., Lorenzi M. Müller cell changes in human diabetic retinopathy. Diabetes. 1998 Mar;47(3):445–449. doi: 10.2337/diabetes.47.3.445. [DOI] [PubMed] [Google Scholar]
- Newman E. A. Inward-rectifying potassium channels in retinal glial (Müller) cells. J Neurosci. 1993 Aug;13(8):3333–3345. doi: 10.1523/JNEUROSCI.13-08-03333.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman E., Reichenbach A. The Müller cell: a functional element of the retina. Trends Neurosci. 1996 Aug;19(8):307–312. doi: 10.1016/0166-2236(96)10040-0. [DOI] [PubMed] [Google Scholar]
- North R. V., Farrell U., Banford D., Jones C., Gregory J. W., Butler G., Owens D. R. Visual function in young IDDM patients over 8 years of age. A 4-year longitudinal study. Diabetes Care. 1997 Nov;20(11):1724–1730. doi: 10.2337/diacare.20.11.1724. [DOI] [PubMed] [Google Scholar]
- Palmowski A. M., Sutter E. E., Bearse M. A., Jr, Fung W. Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci. 1997 Nov;38(12):2586–2596. [PubMed] [Google Scholar]
- Pow D. V., Crook D. K. Direct immunocytochemical evidence for the transfer of glutamine from glial cells to neurons: use of specific antibodies directed against the d-stereoisomers of glutamate and glutamine. Neuroscience. 1996 Jan;70(1):295–302. doi: 10.1016/0306-4522(95)00363-n. [DOI] [PubMed] [Google Scholar]
- Prager T. C., Garcia C. A., Mincher C. A., Mishra J., Chu H. H. The pattern electroretinogram in diabetes. Am J Ophthalmol. 1990 Mar 15;109(3):279–284. doi: 10.1016/s0002-9394(14)74550-7. [DOI] [PubMed] [Google Scholar]
- Puro D. G., Yuan J. P., Sucher N. J. Activation of NMDA receptor-channels in human retinal Müller glial cells inhibits inward-rectifying potassium currents. Vis Neurosci. 1996 Mar-Apr;13(2):319–326. doi: 10.1017/s0952523800007562. [DOI] [PubMed] [Google Scholar]
- Rae J., Cooper K., Gates P., Watsky M. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods. 1991 Mar;37(1):15–26. doi: 10.1016/0165-0270(91)90017-t. [DOI] [PubMed] [Google Scholar]
- Rauen T. Diversity of glutamate transporter expression and function in the mammalian retina. Amino Acids. 2000;19(1):53–62. doi: 10.1007/s007260070033. [DOI] [PubMed] [Google Scholar]
- Rauen T., Taylor W. R., Kuhlbrodt K., Wiessner M. High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res. 1998 Jan;291(1):19–31. doi: 10.1007/s004410050976. [DOI] [PubMed] [Google Scholar]
- Rungger-Brändle E., Dosso A. A., Leuenberger P. M. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2000 Jun;41(7):1971–1980. [PubMed] [Google Scholar]
- Sakai H., Tani Y., Shirasawa E., Shirao Y., Kawasaki K. Development of electroretinographic alterations in streptozotocin-induced diabetes in rats. Ophthalmic Res. 1995;27(1):57–63. doi: 10.1159/000267571. [DOI] [PubMed] [Google Scholar]
- Sarantis M., Attwell D. Glutamate uptake in mammalian retinal glia is voltage- and potassium-dependent. Brain Res. 1990 May 21;516(2):322–325. doi: 10.1016/0006-8993(90)90935-5. [DOI] [PubMed] [Google Scholar]
- Sarantis M., Ballerini L., Miller B., Silver R. A., Edwards M., Attwell D. Glutamate uptake from the synaptic cleft does not shape the decay of the non-NMDA component of the synaptic current. Neuron. 1993 Sep;11(3):541–549. doi: 10.1016/0896-6273(93)90158-n. [DOI] [PubMed] [Google Scholar]
- Schwartz E. A. L-glutamate conditionally modulates the K+ current of Müller glial cells. Neuron. 1993 Jun;10(6):1141–1149. doi: 10.1016/0896-6273(93)90062-v. [DOI] [PubMed] [Google Scholar]
- Sokol S., Moskowitz A., Skarf B., Evans R., Molitch M., Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985 Jan;103(1):51–54. doi: 10.1001/archopht.1985.01050010055018. [DOI] [PubMed] [Google Scholar]
- Sucher N. J., Lipton S. A., Dreyer E. B. Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res. 1997 Dec;37(24):3483–3493. doi: 10.1016/S0042-6989(97)00047-3. [DOI] [PubMed] [Google Scholar]
- Terasaki H., Hirose H., Miyake Y. S-cone pathway sensitivity in diabetes measured with threshold versus intensity curves on flashed backgrounds. Invest Ophthalmol Vis Sci. 1996 Mar;37(4):680–684. [PubMed] [Google Scholar]
- Tregear S. J., Knowles P. J., Ripley L. G., Casswell A. G. Chromatic-contrast threshold impairment in diabetes. Eye (Lond) 1997;11(Pt 4):537–546. doi: 10.1038/eye.1997.140. [DOI] [PubMed] [Google Scholar]
- Trotti D., Danbolt N. C., Volterra A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci. 1998 Aug;19(8):328–334. doi: 10.1016/s0165-6147(98)01230-9. [DOI] [PubMed] [Google Scholar]
- Trotti D., Rizzini B. L., Rossi D., Haugeto O., Racagni G., Danbolt N. C., Volterra A. Neuronal and glial glutamate transporters possess an SH-based redox regulatory mechanism. Eur J Neurosci. 1997 Jun;9(6):1236–1243. doi: 10.1111/j.1460-9568.1997.tb01478.x. [DOI] [PubMed] [Google Scholar]
- Trotti D., Rossi D., Gjesdal O., Levy L. M., Racagni G., Danbolt N. C., Volterra A. Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem. 1996 Mar 15;271(11):5976–5979. doi: 10.1074/jbc.271.11.5976. [DOI] [PubMed] [Google Scholar]
- Vorwerk C. K., Lipton S. A., Zurakowski D., Hyman B. T., Sabel B. A., Dreyer E. B. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci. 1996 Jul;37(8):1618–1624. [PubMed] [Google Scholar]
- Vorwerk C. K., Naskar R., Schuettauf F., Quinto K., Zurakowski D., Gochenauer G., Robinson M. B., Mackler S. A., Dreyer E. B. Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3615–3621. [PubMed] [Google Scholar]
- WOLTER J. R. Diabetic retinopathy. Am J Ophthalmol. 1961 May;51:1123–1141. doi: 10.1016/0002-9394(61)91802-5. [DOI] [PubMed] [Google Scholar]