Skip to main content
Transactions of the American Ophthalmological Society logoLink to Transactions of the American Ophthalmological Society
. 2003;101:293–333.

Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study.

Jay C Erie 1
PMCID: PMC1358995  PMID: 14971584

Abstract

PURPOSE: To perform a sequential quantitative analysis of corneal wound healing after photorefractive keratectomy (PRK) by using confocal microscopy in vivo. METHODS: In a prospective, nonrandomized, comparative trial performed in an institutional setting, 24 eyes of 14 patients received PRK to correct refractive errors between -1.25 and -5.75 D. Central corneas were examined preoperatively and at 1 day, 5 days, and 1, 3, 6, 12, 24, and 36 months after PRK by using confocal microscopy. A masked observer randomly examined 3 to 6 confocal scans per eye per visit to determine epithelial and stromal thickness, keratocyte density in 5 anterior-posterior stromal layers, corneal nerve density in the subbasal region and the stroma, and corneal light backscattering (corneal haze). RESULTS: Epithelial thickness increased 21% (P < .001) by 12 months after PRK and thereafter remained unchanged to 36 months after PRK. There was no change in stromal thickness between 1 and 36 months after PRK (P = .35). The dense keratocyte population in the preoperative anterior 10% of the stroma (32,380 +/- 5,848 cells/mm3) that was partially or completely removed during photoablation was not reconstituted at 36 months in the anterior 10% of the post-PRK stroma (17,720 +/- 4,308 cells/mm3, P < .001). Subbasal nerve fiber bundle density was decreased 60% at 12 months after PRK (P < .001) before returning to densities at 24 and 36 months after PRK that were not significantly different from preoperative values (P = 1.0). Activated keratocytes and corneal haze peaked at 3 months after PRK. CONCLUSIONS: Wounding of the cornea by PRK alters the normal structure, cellularity, and innervation of the cornea for up to 36 months.

Full Text

The Full Text of this article is available as a PDF (688.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allemann N., Chamon W., Silverman R. H., Azar D. T., Reinstein D. Z., Stark W. J., Coleman D. J. High-frequency ultrasound quantitative analyses of corneal scarring following excimer laser keratectomy. Arch Ophthalmol. 1993 Jul;111(7):968–973. doi: 10.1001/archopht.1993.01090070088025. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. A. Actin filaments in normal and migrating corneal epithelial cells. Invest Ophthalmol Vis Sci. 1977 Feb;16(2):161–166. [PubMed] [Google Scholar]
  3. Andrade H. A., McDonald M. B., Liu J. C., Abdelmegeed M., Varnell R., Sunderland G. Evaluation of an opacity lensometer for determining corneal clarity following excimer laser photoablation. Refract Corneal Surg. 1990 Sep-Oct;6(5):346–351. [PubMed] [Google Scholar]
  4. Auran J. D., Koester C. J., Kleiman N. J., Rapaport R., Bomann J. S., Wirotsko B. M., Florakis G. J., Koniarek J. P. Scanning slit confocal microscopic observation of cell morphology and movement within the normal human anterior cornea. Ophthalmology. 1995 Jan;102(1):33–41. doi: 10.1016/s0161-6420(95)31057-3. [DOI] [PubMed] [Google Scholar]
  5. BEC, CALMETTES, DEODATI, PLANEL Etude histologique et histochimique de l'épithélium antérieur de la cornée et de ses basales. Arch Ophtalmol Rev Gen Ophtalmol. 1956 Jul-Aug;16(5):481–506. [PubMed] [Google Scholar]
  6. Balestrazzi E., De Molfetta V., Spadea L., Vinciguerra P., Palmieri G., Santeusanio G., Spagnoli L. Histological, immunohistochemical, and ultrastructural findings in human corneas after photorefractive keratectomy. J Refract Surg. 1995 May-Jun;11(3):181–187. [PubMed] [Google Scholar]
  7. Belmonte C., Acosta M. C., Schmelz M., Gallar J. Measurement of corneal sensitivity to mechanical and chemical stimulation with a CO2 esthesiometer. Invest Ophthalmol Vis Sci. 1999 Feb;40(2):513–519. [PubMed] [Google Scholar]
  8. Bentley Ellison, Campbell Sean, Woo Heung M., Murphy Christopher J. The effect of chronic corneal epithelial debridement on epithelial and stromal morphology in dogs. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2136–2142. [PubMed] [Google Scholar]
  9. Berlau Jens, Becker Hans-Henner, Stave Joachim, Oriwol Constanze, Guthoff Rudolf F. Depth and age-dependent distribution of keratocytes in healthy human corneas: a study using scanning-slit confocal microscopy in vivo. J Cataract Refract Surg. 2002 Apr;28(4):611–616. doi: 10.1016/s0886-3350(01)01227-5. [DOI] [PubMed] [Google Scholar]
  10. Beuerman R. W., McDonald M. B., Shofner R. S., Munnerlyn C. R., Clapham T. N., Salmeron B., Kaufman H. E. Quantitative histological studies of primate corneas after excimer laser photorefractive keratectomy. Arch Ophthalmol. 1994 Aug;112(8):1103–1110. doi: 10.1001/archopht.1994.01090200109031. [DOI] [PubMed] [Google Scholar]
  11. Binder P. S., Anderson J. A., Rock M. E., Vrabec M. P. Human excimer laser keratectomy. Clinical and histopathologic correlations. Ophthalmology. 1994 Jun;101(6):979–989. doi: 10.1016/s0161-6420(94)31202-4. [DOI] [PubMed] [Google Scholar]
  12. Binder P. S., Bosem M., Weinreb R. N. Scheimpflug anterior segment photography assessment of wound healing after myopic excimer laser photorefractive keratectomy. J Cataract Refract Surg. 1996 Mar;22(2):205–212. doi: 10.1016/s0886-3350(96)80220-3. [DOI] [PubMed] [Google Scholar]
  13. Bourne W. M. Cellular changes in transplanted human corneas. Cornea. 2001 Aug;20(6):560–569. doi: 10.1097/00003226-200108000-00002. [DOI] [PubMed] [Google Scholar]
  14. Braunstein R. E., Jain S., McCally R. L., Stark W. J., Connolly P. J., Azar D. T. Objective measurement of corneal light scattering after excimer laser keratectomy. Ophthalmology. 1996 Mar;103(3):439–443. doi: 10.1016/s0161-6420(96)30674-x. [DOI] [PubMed] [Google Scholar]
  15. Bron A. J. The architecture of the corneal stroma. Br J Ophthalmol. 2001 Apr;85(4):379–381. doi: 10.1136/bjo.85.4.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Campos M., Hertzog L., Garbus J. J., McDonnell P. J. Corneal sensitivity after photorefractive keratectomy. Am J Ophthalmol. 1992 Jul 15;114(1):51–54. doi: 10.1016/s0002-9394(14)77412-4. [DOI] [PubMed] [Google Scholar]
  17. Campos M., Szerenyi K., Lee M., McDonnell J. M., Lopez P. F., McDonnell P. J. Keratocyte loss after corneal deepithelialization in primates and rabbits. Arch Ophthalmol. 1994 Feb;112(2):254–260. doi: 10.1001/archopht.1994.01090140130034. [DOI] [PubMed] [Google Scholar]
  18. Cavanagh H. D., Jester J. V., Essepian J., Shields W., Lemp M. A. Confocal microscopy of the living eye. CLAO J. 1990 Jan-Mar;16(1):65–73. [PubMed] [Google Scholar]
  19. Cavanagh H. D., Petroll W. M., Alizadeh H., He Y. G., McCulley J. P., Jester J. V. Clinical and diagnostic use of in vivo confocal microscopy in patients with corneal disease. Ophthalmology. 1993 Oct;100(10):1444–1454. doi: 10.1016/s0161-6420(93)31457-0. [DOI] [PubMed] [Google Scholar]
  20. Chan K. Y., Haschke R. H. Action of a trophic factor(s) from rabbit corneal epithelial culture on dissociated trigeminal neurons. J Neurosci. 1981 Oct;1(10):1155–1162. doi: 10.1523/JNEUROSCI.01-10-01155.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Chan W. K., Hunt K. E., Glasgow B. J., Mondino B. J. Corneal scarring after photorefractive keratectomy in a penetrating keratoplasty. Am J Ophthalmol. 1996 May;121(5):570–571. doi: 10.1016/s0002-9394(14)75433-9. [DOI] [PubMed] [Google Scholar]
  22. Chew S. J., Beuerman R. W., Kaufman H. E., McDonald M. B. In vivo confocal microscopy of corneal wound healing after excimer laser photorefractive keratectomy. CLAO J. 1995 Oct;21(4):273–280. [PubMed] [Google Scholar]
  23. Chiou A. G., Kaufman S. C., Beuerman R. W., Ohta T., Kaufman H. E. Differential diagnosis of linear corneal images on confocal microscopy. Cornea. 1999 Jan;18(1):63–66. [PubMed] [Google Scholar]
  24. Cintron C., Hong B. S., Kublin C. L. Quantitative analysis of collagen from normal developing corneas and corneal scars. Curr Eye Res. 1981;1(1):1–8. doi: 10.3109/02713688109019966. [DOI] [PubMed] [Google Scholar]
  25. Cionni R. J., Katakami C., Lavrich J. B., Kao W. W. Collagen metabolism following corneal laceration in rabbits. Curr Eye Res. 1986 Aug;5(8):549–558. doi: 10.3109/02713688609015118. [DOI] [PubMed] [Google Scholar]
  26. Corbett M. C., Prydal J. I., Verma S., Oliver K. M., Pande M., Marshall J. An in vivo investigation of the structures responsible for corneal haze after photorefractive keratectomy and their effect on visual function. Ophthalmology. 1996 Sep;103(9):1366–1380. doi: 10.1016/s0161-6420(96)30495-8. [DOI] [PubMed] [Google Scholar]
  27. Crosson C. E., Klyce S. D., Beuerman R. W. Epithelial wound closure in the rabbit cornea. A biphasic process. Invest Ophthalmol Vis Sci. 1986 Apr;27(4):464–473. [PubMed] [Google Scholar]
  28. Davison P. F., Galbavy E. J. Connective tissue remodeling in corneal and scleral wounds. Invest Ophthalmol Vis Sci. 1986 Oct;27(10):1478–1484. [PubMed] [Google Scholar]
  29. Del Pero R. A., Gigstad J. E., Roberts A. D., Klintworth G. K., Martin C. A., L'Esperance F. A., Jr, Taylor D. M. A refractive and histopathologic study of excimer laser keratectomy in primates. Am J Ophthalmol. 1990 Apr 15;109(4):419–429. doi: 10.1016/s0002-9394(14)74608-2. [DOI] [PubMed] [Google Scholar]
  30. Desmoulière A., Badid C., Bochaton-Piallat M. L., Gabbiani G. Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol. 1997 Jan;29(1):19–30. doi: 10.1016/s1357-2725(96)00117-3. [DOI] [PubMed] [Google Scholar]
  31. Dierick H. G., Missotten L. Is the corneal contour influenced by a tension in the superficial epithelial cells? A new hypothesis. Refract Corneal Surg. 1992 Jan-Feb;8(1):54–60. [PubMed] [Google Scholar]
  32. Dillon E. C., Eagle R. C., Jr, Laibson P. R. Compensatory epithelial hyperplasia in human corneal disease. Ophthalmic Surg. 1992 Nov;23(11):729–732. [PubMed] [Google Scholar]
  33. Dohlman C. H., Gasset A. R., Rose J. The effect of the absence of corneal epithelium or endothelium on the stromal keratocytes. Invest Ophthalmol. 1968 Oct;7(5):520–534. [PubMed] [Google Scholar]
  34. Drews R. C. The fole of the iris in the healing of corneal wounds. Trans Am Ophthalmol Soc. 1979;77:422–463. [PMC free article] [PubMed] [Google Scholar]
  35. Dua H. S., Gomes J. A., Singh A. Corneal epithelial wound healing. Br J Ophthalmol. 1994 May;78(5):401–408. doi: 10.1136/bjo.78.5.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Dutt S., Steinert R. F., Raizman M. B., Puliafito C. A. One-year results of excimer laser photorefractive keratectomy for low to moderate myopia. Arch Ophthalmol. 1994 Nov;112(11):1427–1436. doi: 10.1001/archopht.1994.01090230041018. [DOI] [PubMed] [Google Scholar]
  37. Ebato B., Friend J., Thoft R. A. Comparison of limbal and peripheral human corneal epithelium in tissue culture. Invest Ophthalmol Vis Sci. 1988 Oct;29(10):1533–1537. [PubMed] [Google Scholar]
  38. Edmund C. Determination of the corneal thickness profile by optical pachometry. Acta Ophthalmol (Copenh) 1987 Apr;65(2):147–152. doi: 10.1111/j.1755-3768.1987.tb06993.x. [DOI] [PubMed] [Google Scholar]
  39. Egger M. D., Petrăn M. New reflected-light microscope for viewing unstained brain and ganglion cells. Science. 1967 Jul 21;157(3786):305–307. doi: 10.1126/science.157.3786.305. [DOI] [PubMed] [Google Scholar]
  40. Erie J. C., Patel S. V., McLaren J. W., Maguire L. J., Ramirez M., Bourne W. M. Keratocyte density in vivo after photorefractive keratectomy in humans. Trans Am Ophthalmol Soc. 1999;97:221–240. [PMC free article] [PubMed] [Google Scholar]
  41. Erie Jay C., Patel Sanjay V., McLaren Jay W., Nau Cherie B., Hodge David O., Bourne William M. Keratocyte density in keratoconus. A confocal microscopy study(a). Am J Ophthalmol. 2002 Nov;134(5):689–695. doi: 10.1016/s0002-9394(02)01698-7. [DOI] [PubMed] [Google Scholar]
  42. Erie Jay C., Patel Sanjay V., McLaren Jay W., Ramirez Manuel, Hodge David O., Maguire Leo J., Bourne William M. Effect of myopic laser in situ keratomileusis on epithelial and stromal thickness: a confocal microscopy study. Ophthalmology. 2002 Aug;109(8):1447–1452. doi: 10.1016/s0161-6420(02)01106-5. [DOI] [PubMed] [Google Scholar]
  43. Essepian J. P., Rajpal R. K., Azar D. T., New K., Antonacci R., Shields W., Stark W. J. The use of confocal microscopy in evaluating corneal wound healing after excimer laser keratectomy. Scanning. 1994 Sep-Oct;16(5):300–304. doi: 10.1002/sca.4950160508. [DOI] [PubMed] [Google Scholar]
  44. Fagerholm P. Wound healing after photorefractive keratectomy. J Cataract Refract Surg. 2000 Mar;26(3):432–447. doi: 10.1016/s0886-3350(99)00436-8. [DOI] [PubMed] [Google Scholar]
  45. Fantes F. E., Hanna K. D., Waring G. O., 3rd, Pouliquen Y., Thompson K. P., Savoldelli M. Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol. 1990 May;108(5):665–675. doi: 10.1001/archopht.1990.01070070051034. [DOI] [PubMed] [Google Scholar]
  46. Fini M. E. Keratocyte and fibroblast phenotypes in the repairing cornea. Prog Retin Eye Res. 1999 Jul;18(4):529–551. doi: 10.1016/s1350-9462(98)00033-0. [DOI] [PubMed] [Google Scholar]
  47. Frueh B. E., Cadez R., Böhnke M. In vivo confocal microscopy after photorefractive keratectomy in humans. A prospective, long-term study. Arch Ophthalmol. 1998 Nov;116(11):1425–1431. doi: 10.1001/archopht.116.11.1425. [DOI] [PubMed] [Google Scholar]
  48. Gan L., Hamberg-Nyström H., Fagerholm P., Van Setten G. Cellular proliferation and leukocyte infiltration in the rabbit cornea after photorefractive keratectomy. Acta Ophthalmol Scand. 2001 Oct;79(5):488–492. doi: 10.1034/j.1600-0420.2001.790512.x. [DOI] [PubMed] [Google Scholar]
  49. Gao J., Gelber-Schwalb T. A., Addeo J. V., Stern M. E. Apoptosis in the rabbit cornea after photorefractive keratectomy. Cornea. 1997 Mar;16(2):200–208. [PubMed] [Google Scholar]
  50. Garana R. M., Petroll W. M., Chen W. T., Herman I. M., Barry P., Andrews P., Cavanagh H. D., Jester J. V. Radial keratotomy. II. Role of the myofibroblast in corneal wound contraction. Invest Ophthalmol Vis Sci. 1992 Nov;33(12):3271–3282. [PubMed] [Google Scholar]
  51. Gartry D. S., Kerr Muir M. G., Marshall J. Excimer laser photorefractive keratectomy. 18-month follow-up. Ophthalmology. 1992 Aug;99(8):1209–1219. doi: 10.1016/s0161-6420(92)31821-4. [DOI] [PubMed] [Google Scholar]
  52. Gauthier C. A., Epstein D., Holden B. A., Tengroth B., Fagerholm P., Hamberg-Nyström H., Sievert R. Epithelial alterations following photorefractive keratectomy for myopia. J Refract Surg. 1995 Mar-Apr;11(2):113–118. doi: 10.3928/1081-597X-19950301-11. [DOI] [PubMed] [Google Scholar]
  53. Gauthier C. A., Holden B. A., Epstein D., Tengroth B., Fagerholm P., Hamberg-Nyström H. Factors affecting epithelial hyperplasia after photorefractive keratectomy. J Cataract Refract Surg. 1997 Sep;23(7):1042–1050. doi: 10.1016/s0886-3350(97)80078-8. [DOI] [PubMed] [Google Scholar]
  54. Giasson C., Forthomme D. Comparison of central corneal thickness measurements between optical and ultrasound pachometers. Optom Vis Sci. 1992 Mar;69(3):236–241. doi: 10.1097/00006324-199203000-00010. [DOI] [PubMed] [Google Scholar]
  55. Gipson I. K., Kiorpes T. C. Epithelial sheet movement: protein and glycoprotein synthesis. Dev Biol. 1982 Jul;92(1):259–262. doi: 10.1016/0012-1606(82)90170-1. [DOI] [PubMed] [Google Scholar]
  56. Grupcheva Christina N., Wong Tracey, Riley Andrew F., McGhee Charles N. J. Assessing the sub-basal nerve plexus of the living healthy human cornea by in vivo confocal microscopy. Clin Exp Ophthalmol. 2002 Jun;30(3):187–190. doi: 10.1046/j.1442-9071.2002.00507.x. [DOI] [PubMed] [Google Scholar]
  57. Hahnel C., Somodi S., Slowik C., Weiss D. G., Guthoff R. F. Fluorescence microscopy and three-dimensional imaging of the porcine corneal keratocyte network. Graefes Arch Clin Exp Ophthalmol. 1997 Dec;235(12):773–779. doi: 10.1007/BF02332862. [DOI] [PubMed] [Google Scholar]
  58. Hamberg-Nyström H., Gauthier C. A., Holden B. A., Epstein D., Fagerholm P., Tengroth B. A comparative study of epithelial hyperplasia after PRK: Summit versus VISX in the same patient. Acta Ophthalmol Scand. 1996 Jun;74(3):228–231. doi: 10.1111/j.1600-0420.1996.tb00081.x. [DOI] [PubMed] [Google Scholar]
  59. Hanna K. D., Pouliquen Y. M., Savoldelli M., Fantes F., Thompson K. P., Waring G. O., 3rd, Samson J. Corneal wound healing in monkeys 18 months after excimer laser photorefractive keratectomy. Refract Corneal Surg. 1990 Sep-Oct;6(5):340–345. [PubMed] [Google Scholar]
  60. Hanna K. D., Pouliquen Y., Waring G. O., 3rd, Savoldelli M., Cotter J., Morton K., Menasche M. Corneal stromal wound healing in rabbits after 193-nm excimer laser surface ablation. Arch Ophthalmol. 1989 Jun;107(6):895–901. doi: 10.1001/archopht.1989.01070010917041. [DOI] [PubMed] [Google Scholar]
  61. Hasty D. L., Hay E. D. Freeze-fracture studies of the developing cell surface. I. The plasmalemma of the corneal fibroblast. J Cell Biol. 1977 Mar;72(3):667–686. doi: 10.1083/jcb.72.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Helena M. C., Baerveldt F., Kim W. J., Wilson S. E. Keratocyte apoptosis after corneal surgery. Invest Ophthalmol Vis Sci. 1998 Feb;39(2):276–283. [PubMed] [Google Scholar]
  63. Hersh P. S., Stulting R. D., Steinert R. F., Waring G. O., 3rd, Thompson K. P., O'Connell M., Doney K., Schein O. D. Results of phase III excimer laser photorefractive keratectomy for myopia. The Summit PRK Study Group. Ophthalmology. 1997 Oct;104(10):1535–1553. doi: 10.1016/s0161-6420(97)30073-6. [DOI] [PubMed] [Google Scholar]
  64. Hitzenberger C. K., Baumgartner A., Drexler W., Fercher A. F. Interferometric measurement of corneal thickness with micrometer precision. Am J Ophthalmol. 1994 Oct 15;118(4):468–476. doi: 10.1016/s0002-9394(14)75798-8. [DOI] [PubMed] [Google Scholar]
  65. Hitzenberger C. K., Drexler W., Fercher A. F. Measurement of corneal thickness by laser Doppler interferometry. Invest Ophthalmol Vis Sci. 1992 Jan;33(1):98–103. [PubMed] [Google Scholar]
  66. Ishikawa T., del Cerro M., Liang F. Q., Kim J. C., Aquavella J. V. Hypersensitivity following excimer laser ablation through the corneal epithelium. Refract Corneal Surg. 1992 Nov-Dec;8(6):466–474. [PubMed] [Google Scholar]
  67. Ishikawa T., del Cerro M., Liang F. Q., Loya N., Aquavella J. V. Corneal sensitivity and nerve regeneration after excimer laser ablation. Cornea. 1994 May;13(3):225–231. doi: 10.1097/00003226-199405000-00006. [DOI] [PubMed] [Google Scholar]
  68. Jester J. V., Andrews P. M., Petroll W. M., Lemp M. A., Cavanagh H. D. In vivo, real-time confocal imaging. J Electron Microsc Tech. 1991 May;18(1):50–60. doi: 10.1002/jemt.1060180108. [DOI] [PubMed] [Google Scholar]
  69. Jester J. V., Huang J., Barry-Lane P. A., Kao W. W., Petroll W. M., Cavanagh H. D. Transforming growth factor(beta)-mediated corneal myofibroblast differentiation requires actin and fibronectin assembly. Invest Ophthalmol Vis Sci. 1999 Aug;40(9):1959–1967. [PubMed] [Google Scholar]
  70. Jester J. V., Petroll W. M., Cavanagh H. D. Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Prog Retin Eye Res. 1999 May;18(3):311–356. doi: 10.1016/s1350-9462(98)00021-4. [DOI] [PubMed] [Google Scholar]
  71. Jester J. V., Petroll W. M., Garana R. M., Lemp M. A., Cavanagh H. D. Comparison of in vivo and ex vivo cellular structure in rabbit eyes detected by tandem scanning microscopy. J Microsc. 1992 Jan;165(Pt 1):169–181. doi: 10.1111/j.1365-2818.1992.tb04314.x. [DOI] [PubMed] [Google Scholar]
  72. Jester J. V., Rodrigues M. M., Herman I. M. Characterization of avascular corneal wound healing fibroblasts. New insights into the myofibroblast. Am J Pathol. 1987 Apr;127(1):140–148. [PMC free article] [PubMed] [Google Scholar]
  73. Kanellopoulos A. J., Pallikaris I. G., Donnenfeld E. D., Detorakis S., Koufala K., Perry H. D. Comparison of corneal sensation following photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg. 1997 Jan-Feb;23(1):34–38. doi: 10.1016/s0886-3350(97)80148-4. [DOI] [PubMed] [Google Scholar]
  74. Kauffmann T., Bodanowitz S., Hesse L., Kroll P. Corneal reinnervation after photorefractive keratectomy and laser in situ keratomileusis: an in vivo study with a confocal videomicroscope. Ger J Ophthalmol. 1996 Nov;5(6):508–512. [PubMed] [Google Scholar]
  75. Kim J. H., Kim M. S., Hahn T. W., Lee Y. C., Sah W. J., Park C. K. Five years results of photorefractive keratectomy for myopia. J Cataract Refract Surg. 1997 Jun;23(5):731–735. doi: 10.1016/s0886-3350(97)80282-9. [DOI] [PubMed] [Google Scholar]
  76. Kim W. J., Mohan R. R., Mohan R. R., Wilson S. E. Effect of PDGF, IL-1alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea. Invest Ophthalmol Vis Sci. 1999 Jun;40(7):1364–1372. [PubMed] [Google Scholar]
  77. Kitano S., Goldman J. N. Cytologic and histochemical changes in corneal wound repair. Arch Ophthalmol. 1966 Sep;76(3):345–354. doi: 10.1001/archopht.1966.03850010347008. [DOI] [PubMed] [Google Scholar]
  78. Koch D. D. Histological changes and wound healing response following noncontact holmium: YAG laser thermal keratoplasty. Trans Am Ophthalmol Soc. 1996;94:745–802. [PMC free article] [PubMed] [Google Scholar]
  79. Koester C. J., Roberts C. W., Donn A., Hoefle F. B. Wide field specular microscopy. Clinical and research applications. Ophthalmology. 1980 Sep;87(9):849–860. doi: 10.1016/s0161-6420(80)35150-6. [DOI] [PubMed] [Google Scholar]
  80. Kuwabara T., Perkins D. G., Cogan D. G. Sliding of the epithelium in experimental corneal wounds. Invest Ophthalmol. 1976 Jan;15(1):4–14. [PubMed] [Google Scholar]
  81. Latvala T., Tervo K., Mustonen R., Tervo T. Expression of cellular fibronectin and tenascin in the rabbit cornea after excimer laser photorefractive keratectomy: a 12 month study. Br J Ophthalmol. 1995 Jan;79(1):65–69. doi: 10.1136/bjo.79.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Lee Bong Hwan, McLaren Jay W., Erie Jay C., Hodge David O., Bourne William M. Reinnervation in the cornea after LASIK. Invest Ophthalmol Vis Sci. 2002 Dec;43(12):3660–3664. [PubMed] [Google Scholar]
  83. Lee Y. G., Chen W. Y., Petroll W. M., Cavanagh H. D., Jester J. V. Corneal haze after photorefractive keratectomy using different epithelial removal techniques: mechanical debridement versus laser scrape. Ophthalmology. 2001 Jan;108(1):112–120. doi: 10.1016/s0161-6420(00)00426-7. [DOI] [PubMed] [Google Scholar]
  84. Lemp M. A., Dilly P. N., Boyde A. Tandem-scanning (confocal) microscopy of the full-thickness cornea. Cornea. 1985;4(4):205–209. [PubMed] [Google Scholar]
  85. Li H. F., Petroll W. M., Møller-Pedersen T., Maurer J. K., Cavanagh H. D., Jester J. V. Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Curr Eye Res. 1997 Mar;16(3):214–221. doi: 10.1076/ceyr.16.3.214.15412. [DOI] [PubMed] [Google Scholar]
  86. Linna T. U., Pérez-Santonja J. J., Tervo K. M., Sakla H. F., Alió y Sanz J. L., Tervo T. M. Recovery of corneal nerve morphology following laser in situ keratomileusis. Exp Eye Res. 1998 Jun;66(6):755–763. doi: 10.1006/exer.1998.0469. [DOI] [PubMed] [Google Scholar]
  87. Linna T. U., Vesaluoma M. H., Pérez-Santonja J. J., Petroll W. M., Alió J. L., Tervo T. M. Effect of myopic LASIK on corneal sensitivity and morphology of subbasal nerves. Invest Ophthalmol Vis Sci. 2000 Feb;41(2):393–397. [PubMed] [Google Scholar]
  88. Linna T., Tervo T. Real-time confocal microscopic observations on human corneal nerves and wound healing after excimer laser photorefractive keratectomy. Curr Eye Res. 1997 Jul;16(7):640–649. doi: 10.1076/ceyr.16.7.640.5058. [DOI] [PubMed] [Google Scholar]
  89. Liu J. C., McDonald M. B., Varnell R., Andrade H. A. Myopic excimer laser photorefractive keratectomy: an analysis of clinical correlations. Refract Corneal Surg. 1990 Sep-Oct;6(5):321–328. [PubMed] [Google Scholar]
  90. Lohmann C. P., Güell J. L. Regression after LASIK for the treatment of myopia: the role of the corneal epithelium. Semin Ophthalmol. 1998 Jun;13(2):79–82. doi: 10.3109/08820539809059822. [DOI] [PubMed] [Google Scholar]
  91. Lohmann C. P., Timberlake G. T., Fitzke F. W., Gartry D. S., Muir M. K., Marshall J. Corneal light scattering after excimer laser photorefractive keratectomy: the objective measurements of haze. Refract Corneal Surg. 1992 Mar-Apr;8(2):114–121. [PubMed] [Google Scholar]
  92. MAURICE D. M., GIARDINI A. A. A simple optical apparatus for measuring the corneal thickness, and the average thickness of the human cornea. Br J Ophthalmol. 1951 Mar;35(3):169–177. doi: 10.1136/bjo.35.3.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Malley D. S., Steinert R. F., Puliafito C. A., Dobi E. T. Immunofluorescence study of corneal wound healing after excimer laser anterior keratectomy in the monkey eye. Arch Ophthalmol. 1990 Sep;108(9):1316–1322. doi: 10.1001/archopht.1990.01070110132037. [DOI] [PubMed] [Google Scholar]
  94. Marshall J., Trokel S. L., Rothery S., Krueger R. R. Long-term healing of the central cornea after photorefractive keratectomy using an excimer laser. Ophthalmology. 1988 Oct;95(10):1411–1421. doi: 10.1016/s0161-6420(88)32997-0. [DOI] [PubMed] [Google Scholar]
  95. Masur S. K., Dewal H. S., Dinh T. T., Erenburg I., Petridou S. Myofibroblasts differentiate from fibroblasts when plated at low density. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4219–4223. doi: 10.1073/pnas.93.9.4219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Matsuda H., Smelser G. K. Electron microscopy of corneal wound healing. Exp Eye Res. 1973 Sep;16(6):427–442. doi: 10.1016/0014-4835(73)90100-0. [DOI] [PubMed] [Google Scholar]
  97. Maurice D. M. A scanning slit optical microscope. Invest Ophthalmol. 1974 Dec;13(12):1033–1037. [PubMed] [Google Scholar]
  98. McDonald M. B., Frantz J. M., Klyce S. D., Salmeron B., Beuerman R. W., Munnerlyn C. R., Clapham T. N., Koons S. J., Kaufman H. E. One-year refractive results of central photorefractive keratectomy for myopia in the nonhuman primate cornea. Arch Ophthalmol. 1990 Jan;108(1):40–47. doi: 10.1001/archopht.1990.01070030046026. [DOI] [PubMed] [Google Scholar]
  99. McLaren J. W., Bourne W. M. A new video pachometer. Invest Ophthalmol Vis Sci. 1999 Jun;40(7):1593–1598. [PubMed] [Google Scholar]
  100. Mitooka Katsuya, Ramirez Manuel, Maguire Leo J., Erie Jay C., Patel Sanjay V., McLaren Jay W., Hodge David O., Bourne William M. Keratocyte density of central human cornea after laser in situ keratomileusis. Am J Ophthalmol. 2002 Mar;133(3):307–314. doi: 10.1016/s0002-9394(01)01421-0. [DOI] [PubMed] [Google Scholar]
  101. Mohan R. R., Kim W. J., Mohan R. R., Chen L., Wilson S. E. Bone morphogenic proteins 2 and 4 and their receptors in the adult human cornea. Invest Ophthalmol Vis Sci. 1998 Dec;39(13):2626–2636. [PubMed] [Google Scholar]
  102. Mohan R. R., Liang Q., Kim W. J., Helena M. C., Baerveldt F., Wilson S. E. Apoptosis in the cornea: further characterization of Fas/Fas ligand system. Exp Eye Res. 1997 Oct;65(4):575–589. doi: 10.1006/exer.1997.0371. [DOI] [PubMed] [Google Scholar]
  103. Mohan R. R., Mohan R. R., Kim W. J., Stark G. R., Wilson S. E. Defective keratocyte apoptosis in response to epithelial injury in stat 1 null mice. Exp Eye Res. 2000 Apr;70(4):485–491. doi: 10.1006/exer.1999.0807. [DOI] [PubMed] [Google Scholar]
  104. Moller-Pedersen T., Cavanagh H. D., Petroll W. M., Jester J. V. Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study. Ophthalmology. 2000 Jul;107(7):1235–1245. doi: 10.1016/s0161-6420(00)00142-1. [DOI] [PubMed] [Google Scholar]
  105. Munnerlyn C. R., Koons S. J., Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg. 1988 Jan;14(1):46–52. doi: 10.1016/s0886-3350(88)80063-4. [DOI] [PubMed] [Google Scholar]
  106. Mustonen R. K., McDonald M. B., Srivannaboon S., Tan A. L., Doubrava M. W., Kim C. K. Normal human corneal cell populations evaluated by in vivo scanning slit confocal microscopy. Cornea. 1998 Sep;17(5):485–492. doi: 10.1097/00003226-199809000-00005. [DOI] [PubMed] [Google Scholar]
  107. Módis L., Jr, Langenbucher A., Seitz B. Scanning-slit and specular microscopic pachymetry in comparison with ultrasonic determination of corneal thickness. Cornea. 2001 Oct;20(7):711–714. doi: 10.1097/00003226-200110000-00008. [DOI] [PubMed] [Google Scholar]
  108. Møller-Pedersen T. A comparative study of human corneal keratocyte and endothelial cell density during aging. Cornea. 1997 May;16(3):333–338. [PubMed] [Google Scholar]
  109. Møller-Pedersen T., Cavanagh H. D., Petroll W. M., Jester J. V. Corneal haze development after PRK is regulated by volume of stromal tissue removal. Cornea. 1998 Nov;17(6):627–639. doi: 10.1097/00003226-199811000-00011. [DOI] [PubMed] [Google Scholar]
  110. Møller-Pedersen T., Ehlers N. A three-dimensional study of the human corneal keratocyte density. Curr Eye Res. 1995 Jun;14(6):459–464. doi: 10.3109/02713689509003756. [DOI] [PubMed] [Google Scholar]
  111. Møller-Pedersen T., Ledet T., Ehlers N. The keratocyte density of human donor corneas. Curr Eye Res. 1994 Feb;13(2):163–169. doi: 10.3109/02713689409042412. [DOI] [PubMed] [Google Scholar]
  112. Møller-Pedersen T., Vogel M., Li H. F., Petroll W. M., Cavanagh H. D., Jester J. V. Quantification of stromal thinning, epithelial thickness, and corneal haze after photorefractive keratectomy using in vivo confocal microscopy. Ophthalmology. 1997 Mar;104(3):360–368. doi: 10.1016/s0161-6420(97)30307-8. [DOI] [PubMed] [Google Scholar]
  113. Müller L. J., Pels E., Vrensen G. F. The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. Br J Ophthalmol. 2001 Apr;85(4):437–443. doi: 10.1136/bjo.85.4.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Müller L. J., Pels L., Vrensen G. F. Novel aspects of the ultrastructural organization of human corneal keratocytes. Invest Ophthalmol Vis Sci. 1995 Dec;36(13):2557–2567. [PubMed] [Google Scholar]
  115. Müller L. J., Pels L., Vrensen G. F. Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci. 1996 Mar;37(4):476–488. [PubMed] [Google Scholar]
  116. Müller L. J., Vrensen G. F., Pels L., Cardozo B. N., Willekens B. Architecture of human corneal nerves. Invest Ophthalmol Vis Sci. 1997 Apr;38(5):985–994. [PubMed] [Google Scholar]
  117. Nakayasu K. Stromal changes following removal of epithelium in rat cornea. Jpn J Ophthalmol. 1988;32(2):113–125. [PubMed] [Google Scholar]
  118. Nishida T., Yasumoto K., Otori T., Desaki J. The network structure of corneal fibroblasts in the rat as revealed by scanning electron microscopy. Invest Ophthalmol Vis Sci. 1988 Dec;29(12):1887–1890. [PubMed] [Google Scholar]
  119. Nissen J., Hjortdal J. O., Ehlers N., Frost-Larsen K., Sørensen T. A clinical comparison of optical and ultrasonic pachometry. Acta Ophthalmol (Copenh) 1991 Oct;69(5):659–663. doi: 10.1111/j.1755-3768.1991.tb04857.x. [DOI] [PubMed] [Google Scholar]
  120. O'Brart D. P., Corbett M. C., Verma S., Heacock G., Oliver K. M., Lohmann C. P., Kerr Muir M. G., Marshall J. Effects of ablation diameter, depth, and edge contour on the outcome of photorefractive keratectomy. J Refract Surg. 1996 Jan-Feb;12(1):50–60. doi: 10.3928/1081-597X-19960101-12. [DOI] [PubMed] [Google Scholar]
  121. Oliveira-Soto L., Efron N. Morphology of corneal nerves using confocal microscopy. Cornea. 2001 May;20(4):374–384. doi: 10.1097/00003226-200105000-00008. [DOI] [PubMed] [Google Scholar]
  122. Park C. K., Kim J. H. Comparison of wound healing after photorefractive keratectomy and laser in situ keratomileusis in rabbits. J Cataract Refract Surg. 1999 Jun;25(6):842–850. doi: 10.1016/s0886-3350(99)00047-4. [DOI] [PubMed] [Google Scholar]
  123. Patel S. V., McLaren J. W., Camp J. J., Nelson L. R., Bourne W. M. Automated quantification of keratocyte density by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci. 1999 Feb;40(2):320–326. [PubMed] [Google Scholar]
  124. Patel S. V., McLaren J. W., Camp J. J., Nelson L. R., Bourne W. M. Automated quantification of keratocyte density by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci. 1999 Feb;40(2):320–326. [PubMed] [Google Scholar]
  125. Patel S., McLaren J., Hodge D., Bourne W. Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci. 2001 Feb;42(2):333–339. [PubMed] [Google Scholar]
  126. Patel Sanjay V., McLaren Jay W., Hodge David O., Bourne William M. Confocal microscopy in vivo in corneas of long-term contact lens wearers. Invest Ophthalmol Vis Sci. 2002 Apr;43(4):995–1003. [PubMed] [Google Scholar]
  127. Petroll W. M., Boettcher K., Barry P., Cavanagh H. D., Jester J. V. Quantitative assessment of anteroposterior keratocyte density in the normal rabbit cornea. Cornea. 1995 Jan;14(1):3–9. [PubMed] [Google Scholar]
  128. Petroll W. M., Cavanagh H. D., Jester J. V. Three-dimensional imaging of corneal cells using in vivo confocal microscopy. J Microsc. 1993 Jun;170(Pt 3):213–219. doi: 10.1111/j.1365-2818.1993.tb03344.x. [DOI] [PubMed] [Google Scholar]
  129. Petroll W. M., Cavanagh H. D., Lemp M. A., Andrews P. M., Jester J. V. Digital image acquisition in in vivo confocal microscopy. J Microsc. 1992 Jan;165(Pt 1):61–69. doi: 10.1111/j.1365-2818.1992.tb04305.x. [DOI] [PubMed] [Google Scholar]
  130. Petroll W. M., Jester J. V., Cavanagh H. D. In vivo confocal imaging: general principles and applications. Scanning. 1994 May-Jun;16(3):131–149. [PubMed] [Google Scholar]
  131. Petroll W. M., Jester J. V., Cavanagh H. D. Quantitative three-dimensional confocal imaging of the cornea in situ and in vivo: system design and calibration. Scanning. 1996 Jan;18(1):45–49. doi: 10.1002/sca.1996.4950180107. [DOI] [PubMed] [Google Scholar]
  132. Poole C. A., Brookes N. H., Clover G. M. Keratocyte networks visualised in the living cornea using vital dyes. J Cell Sci. 1993 Oct;106(Pt 2):685–691. doi: 10.1242/jcs.106.2.685. [DOI] [PubMed] [Google Scholar]
  133. Prydal J. I., Franc F., Dilly P. N., Kerr Muir M. G., Corbett M. C., Marshall J. Keratocyte density and size in conscious humans by digital image analysis of confocal images. Eye (Lond) 1998;12(Pt 3A):337–342. doi: 10.1038/eye.1998.82. [DOI] [PubMed] [Google Scholar]
  134. Prydal J. I., Kerr Muir M. G., Dilly P. N., Corbett M. C., Verma S., Marshall J. Confocal microscopy using oblique sections for measurement of corneal epithelial thickness in conscious humans. Acta Ophthalmol Scand. 1997 Dec;75(6):624–628. doi: 10.1111/j.1600-0420.1997.tb00618.x. [DOI] [PubMed] [Google Scholar]
  135. Pérez-Santonja J. J., Sakla H. F., Cardona C., Chipont E., Alió J. L. Corneal sensitivity after photorefractive keratectomy and laser in situ keratomileusis for low myopia. Am J Ophthalmol. 1999 May;127(5):497–504. doi: 10.1016/s0002-9394(98)00444-9. [DOI] [PubMed] [Google Scholar]
  136. Reinstein D. Z., Silverman R. H., Rondeau M. J., Coleman D. J. Epithelial and corneal thickness measurements by high-frequency ultrasound digital signal processing. Ophthalmology. 1994 Jan;101(1):140–146. doi: 10.1016/s0161-6420(94)31373-x. [DOI] [PubMed] [Google Scholar]
  137. Reinstein D. Z., Silverman R. H., Sutton H. F., Coleman D. J. Very high-frequency ultrasound corneal analysis identifies anatomic correlates of optical complications of lamellar refractive surgery: anatomic diagnosis in lamellar surgery. Ophthalmology. 1999 Mar;106(3):474–482. doi: 10.1016/S0161-6420(99)90105-7. [DOI] [PubMed] [Google Scholar]
  138. Rosenberg M. E., Tervo T. M., Immonen I. J., Müller L. J., Grönhagen-Riska C., Vesaluoma M. H. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2000 Sep;41(10):2915–2921. [PubMed] [Google Scholar]
  139. Ross R., Everett N. B., Tyler R. Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis. J Cell Biol. 1970 Mar;44(3):645–654. doi: 10.1083/jcb.44.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Rózsa A. J., Guss R. B., Beuerman R. W. Neural remodeling following experimental surgery of the rabbit cornea. Invest Ophthalmol Vis Sci. 1983 Aug;24(8):1033–1051. [PubMed] [Google Scholar]
  141. Salz J. J., Azen S. P., Berstein J., Caroline P., Villasenor R. A., Schanzlin D. J. Evaluation and comparison of sources of variability in the measurement of corneal thickness with ultrasonic and optical pachymeters. Ophthalmic Surg. 1983 Sep;14(9):750–754. [PubMed] [Google Scholar]
  142. Schimmelpfennig B. Nerve structures in human central corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 1982;218(1):14–20. doi: 10.1007/BF02134093. [DOI] [PubMed] [Google Scholar]
  143. Seiler T., Holschbach A., Derse M., Jean B., Genth U. Complications of myopic photorefractive keratectomy with the excimer laser. Ophthalmology. 1994 Jan;101(1):153–160. doi: 10.1016/s0161-6420(94)31371-6. [DOI] [PubMed] [Google Scholar]
  144. Seiler T., Kahle G., Kriegerowski M. Excimer laser (193 nm) myopic keratomileusis in sighted and blind human eyes. Refract Corneal Surg. 1990 May-Jun;6(3):165–173. [PubMed] [Google Scholar]
  145. Seiler T., Kahle G., Kriegerowski M. Excimer laser (193 nm) myopic keratomileusis in sighted and blind human eyes. Refract Corneal Surg. 1990 May-Jun;6(3):165–173. [PubMed] [Google Scholar]
  146. Seiler T., Wollensak J. Myopic photorefractive keratectomy with the excimer laser. One-year follow-up. Ophthalmology. 1991 Aug;98(8):1156–1163. doi: 10.1016/s0161-6420(91)32157-2. [DOI] [PubMed] [Google Scholar]
  147. Shieh E., Moreira H., D'Arcy J., Clapham T. N., McDonnell P. J. Quantitative analysis of wound healing after cylindrical and spherical excimer laser ablations. Ophthalmology. 1992 Jul;99(7):1050–1055. doi: 10.1016/s0161-6420(92)31851-2. [DOI] [PubMed] [Google Scholar]
  148. Siganos D. S., Katsanevaki V. J., Pallikaris I. G. Correlation of subepithelial haze and refractive regression 1 month after photorefractive keratectomy for myopia. J Refract Surg. 1999 May-Jun;15(3):338–342. doi: 10.3928/1081-597X-19990501-10. [DOI] [PubMed] [Google Scholar]
  149. Spadea L., Fasciani R., Necozione S., Balestrazzi E. Role of the corneal epithelium in refractive changes following laser in situ keratomileusis for high myopia. J Refract Surg. 2000 Mar-Apr;16(2):133–139. doi: 10.3928/1081-597X-20000301-05. [DOI] [PubMed] [Google Scholar]
  150. Steinert R. F. Wound healing anomalies after excimer laser photorefractive keratectomy: correlation of clinical outcomes, corneal topography, and confocal microscopy. Trans Am Ophthalmol Soc. 1997;95:629–714. [PMC free article] [PubMed] [Google Scholar]
  151. Strissel K. J., Rinehart W. B., Fini M. E. Regulation of paracrine cytokine balance controlling collagenase synthesis by corneal cells. Invest Ophthalmol Vis Sci. 1997 Feb;38(2):546–552. [PubMed] [Google Scholar]
  152. Stulting R. D., Thompson K. P., Waring G. O., 3rd, Lynn M. The effect of photorefractive keratectomy on the corneal endothelium. Ophthalmology. 1996 Sep;103(9):1357–1365. doi: 10.1016/s0161-6420(96)30496-x. [DOI] [PubMed] [Google Scholar]
  153. Taliana L., Evans M. D., Dimitrijevich S. D., Steele J. G. Vitronectin or fibronectin is required for corneal fibroblast-seeded collagen gel contraction. Invest Ophthalmol Vis Sci. 2000 Jan;41(1):103–109. [PubMed] [Google Scholar]
  154. Taylor D. M., L'Esperance F. A., Jr, Del Pero R. A., Roberts A. D., Gigstad J. E., Klintworth G., Martin C. A., Warner J. Human excimer laser lamellar keratectomy. A clinical study. Ophthalmology. 1989 May;96(5):654–664. doi: 10.1016/s0161-6420(89)32836-3. [DOI] [PubMed] [Google Scholar]
  155. Tervo K., Latvala T. M., Tervo T. M. Recovery of corneal innervation following photorefractive keratoablation. Arch Ophthalmol. 1994 Nov;112(11):1466–1470. doi: 10.1001/archopht.1994.01090230080025. [DOI] [PubMed] [Google Scholar]
  156. Tervo K., Tervo T., Eränkö L., Vannas A., Cuello A. C., Eränkö O. Substance P-immunoreactive nerves in the human cornea and iris. Invest Ophthalmol Vis Sci. 1982 Nov;23(5):671–674. [PubMed] [Google Scholar]
  157. Toivanen M., Tervo T., Partanen M., Vannas A., Hervonen A. Histochemical demonstration of adrenergic nerves in the stroma of human cornea. Invest Ophthalmol Vis Sci. 1987 Feb;28(2):398–400. [PubMed] [Google Scholar]
  158. Tomii S., Kinoshita S. Observations of human corneal epithelium by tandem scanning confocal microscope. Scanning. 1994 Sep-Oct;16(5):305–306. [PubMed] [Google Scholar]
  159. Trabucchi G., Brancato R., Verdi M., Carones F., Sala C. Corneal nerve damage and regeneration after excimer laser photokeratectomy in rabbit eyes. Invest Ophthalmol Vis Sci. 1994 Jan;35(1):229–235. [PubMed] [Google Scholar]
  160. Trokel S. L., Srinivasan R., Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol. 1983 Dec;96(6):710–715. doi: 10.1016/s0002-9394(14)71911-7. [DOI] [PubMed] [Google Scholar]
  161. Tuft S. J., Gartry D. S., Rawe I. M., Meek K. M. Photorefractive keratectomy: implications of corneal wound healing. Br J Ophthalmol. 1993 Apr;77(4):243–247. doi: 10.1136/bjo.77.4.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Tuft S. J., Zabel R. W., Marshall J. Corneal repair following keratectomy. A comparison between conventional surgery and laser photoablation. Invest Ophthalmol Vis Sci. 1989 Aug;30(8):1769–1777. [PubMed] [Google Scholar]
  163. Ueda S., del Cerro M., LoCascio J. A., Aquavella J. V. Peptidergic and catecholaminergic fibers in the human corneal epithelium. An immunohistochemical and electron microscopic study. Acta Ophthalmol Suppl. 1989;192:80–90. doi: 10.1111/j.1755-3768.1989.tb07098.x. [DOI] [PubMed] [Google Scholar]
  164. Van Horn D. L., Doughman D. J., Harris J. E., Miller G. E., Lindstrom R., Good R. A. Ultrastructure of human organ-cultured cornea. II. Stroma and epithelium. Arch Ophthalmol. 1975 Apr;93(4):275–277. doi: 10.1001/archopht.1975.01010020285007. [DOI] [PubMed] [Google Scholar]
  165. Varon S. S., Bunge R. P. Trophic mechanisms in the peripheral nervous system. Annu Rev Neurosci. 1978;1:327–361. doi: 10.1146/annurev.ne.01.030178.001551. [DOI] [PubMed] [Google Scholar]
  166. Vesaluoma M., Pérez-Santonja J., Petroll W. M., Linna T., Alió J., Tervo T. Corneal stromal changes induced by myopic LASIK. Invest Ophthalmol Vis Sci. 2000 Feb;41(2):369–376. [PubMed] [Google Scholar]
  167. Weber B. A., Fagerholm P., Johansson B. Colocalization of hyaluronan and water in rabbit corneas after photorefractive keratectomy by specific staining for hyaluronan and by quantitative microradiography. Cornea. 1997 Sep;16(5):560–563. [PubMed] [Google Scholar]
  168. Weng J., Mohan R. R., Li Q., Wilson S. E. IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: interleukin-1 beta expression in the cornea. Cornea. 1997 Jul;16(4):465–471. [PubMed] [Google Scholar]
  169. Wilson S. E., Chen L., Mohan R. R., Liang Q., Liu J. Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding. Exp Eye Res. 1999 Apr;68(4):377–397. doi: 10.1006/exer.1998.0603. [DOI] [PubMed] [Google Scholar]
  170. Wilson S. E., He Y. G., Weng J., Li Q., McDowall A. W., Vital M., Chwang E. L. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res. 1996 Apr;62(4):325–327. doi: 10.1006/exer.1996.0038. [DOI] [PubMed] [Google Scholar]
  171. Wilson S. E., Kim W. J. Keratocyte apoptosis: implications on corneal wound healing, tissue organization, and disease. Invest Ophthalmol Vis Sci. 1998 Feb;39(2):220–226. [PubMed] [Google Scholar]
  172. Wilson S. E., Li Q., Weng J., Barry-Lane P. A., Jester J. V., Liang Q., Wordinger R. J. The Fas-Fas ligand system and other modulators of apoptosis in the cornea. Invest Ophthalmol Vis Sci. 1996 Jul;37(8):1582–1592. [PubMed] [Google Scholar]
  173. Wilson S. E., Liu J. J., Mohan R. R. Stromal-epithelial interactions in the cornea. Prog Retin Eye Res. 1999 May;18(3):293–309. doi: 10.1016/s1350-9462(98)00017-2. [DOI] [PubMed] [Google Scholar]
  174. Wilson S. E., Mohan R. R., Hong J. W., Lee J. S., Choi R., Mohan R. R. The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: elusive control of biological variability and effect on custom laser vision correction. Arch Ophthalmol. 2001 Jun;119(6):889–896. doi: 10.1001/archopht.119.6.889. [DOI] [PubMed] [Google Scholar]
  175. Wilson S. E., Mohan R. R., Hong J. W., Lee J. S., Choi R., Mohan R. R. The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: elusive control of biological variability and effect on custom laser vision correction. Arch Ophthalmol. 2001 Jun;119(6):889–896. doi: 10.1001/archopht.119.6.889. [DOI] [PubMed] [Google Scholar]
  176. Wilson S. E. Role of apoptosis in wound healing in the cornea. Cornea. 2000 May;19(3 Suppl):S7–12. doi: 10.1097/00003226-200005001-00003. [DOI] [PubMed] [Google Scholar]
  177. Wu W. C., Stark W. J., Green W. R. Corneal wound healing after 193-nm excimer laser keratectomy. Arch Ophthalmol. 1991 Oct;109(10):1426–1432. doi: 10.1001/archopht.1991.01080100106053. [DOI] [PubMed] [Google Scholar]
  178. Zeger S. L., Liang K. Y. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986 Mar;42(1):121–130. [PubMed] [Google Scholar]
  179. Zieske J. D. Extracellular matrix and wound healing. Curr Opin Ophthalmol. 2001 Aug;12(4):237–241. doi: 10.1097/00055735-200108000-00001. [DOI] [PubMed] [Google Scholar]
  180. Zieske J. D., Guimarães S. R., Hutcheon A. E. Kinetics of keratocyte proliferation in response to epithelial debridement. Exp Eye Res. 2001 Jan;72(1):33–39. doi: 10.1006/exer.2000.0926. [DOI] [PubMed] [Google Scholar]

Articles from Transactions of the American Ophthalmological Society are provided here courtesy of American Ophthalmological Society

RESOURCES