Skip to main content
Transactions of the American Ophthalmological Society logoLink to Transactions of the American Ophthalmological Society
. 2001;99:33–43.

The effects of panretinal photocoagulation on the primary visual cortex of the adult monkey.

J A Matsubara 1, D Y Lam 1, R E Kalil 1, B T Gabelt 1, T M Nork 1, D Hornan 1, P L Kaufman 1
PMCID: PMC1359021  PMID: 11797318

Abstract

PURPOSE: To determine the effects of panretinal photocoagulation (PRP) on the levels of cytochrome oxidase (CO), Zif268, synaptophysin, and growth-associated protein 43 (GAP-43) in the primary visual cortex of adult monkeys. METHODS: Ten adult primates underwent unilateral argon laser PRP with instrument settings at 300 to 500 microns spot diameter, 200 to 500 mW power intensity, and 0.1 to 0.2 second duration, causing moderate to severe burns in the peripheral retina. At 20 hours, 12 days, 6 months, and 13 months after laser treatment, the visual cortex was assessed histologically for CO and immunohistochemically for Zif268, synaptophysin, and GAP-43. RESULTS: PRP resulted in transneuronal changes in the relative distributions of CO, Zif268, synaptophysin, and GAP-43 in the primary visual cortex. CO activity was relatively decreased in the lasered eye's ocular dominance columns at 12 days post-PRP, with recovery by 13 months post-PRP. The level of Zif268 was dramatically decreased in the lasered eye's ocular dominance columns at 20 hours post-PRP, with gradual recovery by 13 months post-PRP. Levels of synaptophysin and GAP-43 immunoreactivity were increased in both the lasered and the nonlasered eyes' ocular dominance columns at 6 months post-PRP. CONCLUSION: PRP treatment results in metabolic activity changes in the visual cortex of the adult monkey. These changes are followed chronologically by spatial redistribution of synaptophysin and GAP-43, neurochemicals known to play a role in cortical plasticity. This study demonstrates, for the first time, that PRP as used in the treatment of diabetic retinopathy results in a redistribution of neurochemicals in the adult monkey visual cortex. Such changes may help explain the anomalous visual functional loss often reported by patients after PRP.

Full Text

The Full Text of this article is available as a PDF (482.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baekelandt V., Arckens L., Annaert W., Eysel U. T., Orban G. A., Vandesande F. Alterations in GAP-43 and synapsin immunoreactivity provide evidence for synaptic reorganization in adult cat dorsal lateral geniculate nucleus following retinal lesions. Eur J Neurosci. 1994 May 1;6(5):754–765. doi: 10.1111/j.1460-9568.1994.tb00987.x. [DOI] [PubMed] [Google Scholar]
  2. Baekelandt V., Eysel U. T., Orban G. A., Vandesande F. Long-term effects of retinal lesions on growth-associated protein 43 (GAP-43) expression in the visual system of adult cats. Neurosci Lett. 1996 Apr 19;208(2):113–116. doi: 10.1016/0304-3940(96)12558-1. [DOI] [PubMed] [Google Scholar]
  3. Boyd J. D., Matsubara J. A. Laminar and columnar patterns of geniculocortical projections in the cat: relationship to cytochrome oxidase. J Comp Neurol. 1996 Feb 19;365(4):659–682. doi: 10.1002/(SICI)1096-9861(19960219)365:4<659::AID-CNE11>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  4. Chaudhuri A., Matsubara J. A., Cynader M. S. Neuronal activity in primate visual cortex assessed by immunostaining for the transcription factor Zif268. Vis Neurosci. 1995 Jan-Feb;12(1):35–50. doi: 10.1017/s095252380000729x. [DOI] [PubMed] [Google Scholar]
  5. Crockett D. P., Maslany S., Harris S. L., Egger M. D. Enhanced cytochrome-oxidase staining of the cuneate nucleus in the rat reveals a modifiable somatotopic map. Brain Res. 1993 May 28;612(1-2):41–55. doi: 10.1016/0006-8993(93)91642-6. [DOI] [PubMed] [Google Scholar]
  6. Dragunow M., Faull R. The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods. 1989 Sep;29(3):261–265. doi: 10.1016/0165-0270(89)90150-7. [DOI] [PubMed] [Google Scholar]
  7. Hendry S. H., Jones E. G. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature. 1986 Apr 24;320(6064):750–753. doi: 10.1038/320750a0. [DOI] [PubMed] [Google Scholar]
  8. Herdegen T., Walker T., Leah J. D., Bravo R., Zimmermann M. The KROX-24 protein, a new transcription regulating factor: expression in the rat central nervous system following afferent somatosensory stimulation. Neurosci Lett. 1990 Nov 27;120(1):21–24. doi: 10.1016/0304-3940(90)90158-6. [DOI] [PubMed] [Google Scholar]
  9. Horton J. C., Hocking D. R. Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. J Neurosci. 1996 Nov 15;16(22):7228–7239. doi: 10.1523/JNEUROSCI.16-22-07228.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horton J. C., Hocking D. R. Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J Neurosci. 1998 Jul 15;18(14):5433–5455. doi: 10.1523/JNEUROSCI.18-14-05433.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaufman P. L., Wallow I. H. Minified diagnostic contact lenses for biomicroscopic examination and photocoagulation of the anterior and posterior segment in small primates. Exp Eye Res. 1985 Jun;40(6):883–885. doi: 10.1016/0014-4835(85)90133-2. [DOI] [PubMed] [Google Scholar]
  12. Knaus P., Betz H., Rehm H. Expression of synaptophysin during postnatal development of the mouse brain. J Neurochem. 1986 Oct;47(4):1302–1304. doi: 10.1111/j.1471-4159.1986.tb00754.x. [DOI] [PubMed] [Google Scholar]
  13. Landers M. B., 3rd, Stefansson E., Wolbarsht M. L. Panretinal photocoagulation and retinal oxygenation. Retina. 1982;2(3):167–175. doi: 10.1097/00006982-198200230-00007. [DOI] [PubMed] [Google Scholar]
  14. Liu Y., Meiri K. F., Cynader M. S., Gu Q. Nerve growth factor induced modification of presynaptic elements in adult visual cortex in vivo. Brain Res. 1996 Sep 2;732(1-2):36–42. doi: 10.1016/0006-8993(96)00484-2. [DOI] [PubMed] [Google Scholar]
  15. Lovinger D. M., Akers R. F., Nelson R. B., Barnes C. A., McNaughton B. L., Routtenberg A. A selective increase in phosporylation of protein F1, a protein kinase C substrate, directly related to three day growth of long term synaptic enhancement. Brain Res. 1985 Sep 16;343(1):137–143. doi: 10.1016/0006-8993(85)91167-9. [DOI] [PubMed] [Google Scholar]
  16. McIntosh H., Daw N., Parkinson D. GAP-43 in the cat visual cortex during postnatal development. Vis Neurosci. 1990 Jun;4(6):585–593. doi: 10.1017/s0952523800005782. [DOI] [PubMed] [Google Scholar]
  17. Meiri K. F., Pfenninger K. H., Willard M. B. Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc Natl Acad Sci U S A. 1986 May;83(10):3537–3541. doi: 10.1073/pnas.83.10.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nelson R. B., Routtenberg A. Characterization of protein F1 (47 kDa, 4.5 pI): a kinase C substrate directly related to neural plasticity. Exp Neurol. 1985 Jul;89(1):213–224. doi: 10.1016/0014-4886(85)90277-8. [DOI] [PubMed] [Google Scholar]
  19. Parver L. M. Photochemical injury to the foveomacula of the monkey eye following argon blue-green panretinal photocoagulation. Trans Am Ophthalmol Soc. 2000;98:365–374. [PMC free article] [PubMed] [Google Scholar]
  20. Sagar S. M., Sharp F. R., Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science. 1988 Jun 3;240(4857):1328–1331. doi: 10.1126/science.3131879. [DOI] [PubMed] [Google Scholar]
  21. Schmid L. M., Rosa M. G., Calford M. B., Ambler J. S. Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions. Cereb Cortex. 1996 May-Jun;6(3):388–405. doi: 10.1093/cercor/6.3.388. [DOI] [PubMed] [Google Scholar]
  22. Stefansson E., Landers M. B., 3rd, Wolbarsht M. L. Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy. Trans Am Ophthalmol Soc. 1981;79:307–334. [PMC free article] [PubMed] [Google Scholar]
  23. Stefansson E., Landers M. B., 3rd, Wolbarsht M. L. Oxygenation and vasodilatation in relation to diabetic and other proliferative retinopathies. Ophthalmic Surg. 1983 Mar;14(3):209–226. [PubMed] [Google Scholar]
  24. Van Essen D. C., Newsome W. T., Maunsell J. H. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res. 1984;24(5):429–448. doi: 10.1016/0042-6989(84)90041-5. [DOI] [PubMed] [Google Scholar]
  25. Voigt T., De Lima A. D., Beckmann M. Synaptophysin immunohistochemistry reveals inside-out pattern of early synaptogenesis in ferret cerebral cortex. J Comp Neurol. 1993 Apr 1;330(1):48–64. doi: 10.1002/cne.903300105. [DOI] [PubMed] [Google Scholar]
  26. Wiedenmann B., Franke W. W. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell. 1985 Jul;41(3):1017–1028. doi: 10.1016/s0092-8674(85)80082-9. [DOI] [PubMed] [Google Scholar]
  27. Wolbarsht M. L., Landers M. B., 3rd, Stefansson E. Vasodilation and the etiology of diabetic retinopathy: a new model. Ophthalmic Surg. 1981 Feb;12(2):104–107. [PubMed] [Google Scholar]
  28. Wolbarsht M. L., Landers M. B., 3rd The rationale of photocoagulation therapy for proliferative diabetic retinopathy: a review and a model. Ophthalmic Surg. 1980 Apr;11(4):235–245. [PubMed] [Google Scholar]
  29. Wong-Riley M., Carroll E. W. Effect of impulse blockage on cytochrome oxidase activity in monkey visual system. Nature. 1984 Jan 19;307(5948):262–264. doi: 10.1038/307262a0. [DOI] [PubMed] [Google Scholar]
  30. Wong-Riley M., Carroll E. W. Effect of impulse blockage on cytochrome oxidase activity in monkey visual system. Nature. 1984 Jan 19;307(5948):262–264. doi: 10.1038/307262a0. [DOI] [PubMed] [Google Scholar]

Articles from Transactions of the American Ophthalmological Society are provided here courtesy of American Ophthalmological Society

RESOURCES