Full text
PDF![87](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/31708d8e2790/jphysiol01223-0105.png)
![88](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/3e1ffee5848a/jphysiol01223-0106.png)
![89](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/a059ce8b06b2/jphysiol01223-0107.png)
![90](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/611675d7ba9e/jphysiol01223-0108.png)
![91](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/9162d4c9af72/jphysiol01223-0109.png)
![92](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/c900b7a1ccf3/jphysiol01223-0110.png)
![93](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/2c2c7143010b/jphysiol01223-0111.png)
![94](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/dac8f5c7cd31/jphysiol01223-0112.png)
![95](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/855c368a4c52/jphysiol01223-0113.png)
![96](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/f6b5c6833783/jphysiol01223-0114.png)
![97](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/558c14d3a141/jphysiol01223-0115.png)
![98](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/eb07dea5267a/jphysiol01223-0116.png)
![99](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/1d1f0630b5bf/jphysiol01223-0117.png)
![100](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/5a56514cb6e8/jphysiol01223-0118.png)
![101](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/da6dd90c8bc2/jphysiol01223-0119.png)
![102](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/2f6e78ff3966/jphysiol01223-0120.png)
![103](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/46697d2181e1/jphysiol01223-0121.png)
![104](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/10918f51b21a/jphysiol01223-0122.png)
![105](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/5471e5457131/jphysiol01223-0123.png)
![106](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/21970521030e/jphysiol01223-0124.png)
![107](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/667ab2779dc8/jphysiol01223-0125.png)
![108](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/6b12a2518ab2/jphysiol01223-0126.png)
![109](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d69/1359363/e7efd673e481/jphysiol01223-0127.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADRIAN R. H. Internal chloride concentration and chloride efflux of frog muscle. J Physiol. 1961 May;156:623–632. doi: 10.1113/jphysiol.1961.sp006698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ADRIAN R. H. Potassium chloride movement and the membrane potential of frog muscle. J Physiol. 1960 Apr;151:154–185. [PMC free article] [PubMed] [Google Scholar]
- ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolingbroke V., Harris E. J., Sjodin R. A. Rubidium and caesium entry, and cation interaction in frog skeletal muscle. J Physiol. 1961 Jul;157(2):289–305. doi: 10.1113/jphysiol.1961.sp006722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyle P. J., Conway E. J., Kane F., O'reilly H. L. Volume of interfibre spaces in frog muscle and the calculation of concentrations in the fibre water. J Physiol. 1941 Jun 30;99(4):401–414. doi: 10.1113/jphysiol.1941.sp003911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CAREY M. J., CONWAY E. J. Comparison of various media for immersing frog sartorii at room temperature, and evidence for the regional distribution of fibre Na+. J Physiol. 1954 Aug 27;125(2):232–250. doi: 10.1113/jphysiol.1954.sp005154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CAREY M. J., CONWAY E. J., KERNAN R. P. Secretion of sodium ions by the frog's sartorius. J Physiol. 1959 Oct;148:51–82. doi: 10.1113/jphysiol.1959.sp006273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONWAY E. J. Calculation of the idiomolar value and its electrostatic equivalent in normal mammalian skeletal muscle. Ir J Med Sci. 1950 May;(293):216–224. doi: 10.1007/BF02950634. [DOI] [PubMed] [Google Scholar]
- COSMOS E., HARRIS E. J. In vitro studies of the gain and exchange of calcium in frog skeletal muscle. J Gen Physiol. 1961 Jul;44:1121–1130. doi: 10.1085/jgp.44.6.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COTLOVE E. Mechanism and extent of distribution of inulin and sucrose in chloride space of tissues. Am J Physiol. 1954 Mar;176(3):396–410. doi: 10.1152/ajplegacy.1954.176.3.396. [DOI] [PubMed] [Google Scholar]
- DESMEDT J. E. Electrical activity and intracellular sodium concentration in frog muscle. J Physiol. 1953 Jul;121(1):191–205. doi: 10.1113/jphysiol.1953.sp004940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danielli J. F., Davson H. The volume of the vascular system, and penetration of sugars from the vascular system into the intercellular space. J Physiol. 1941 Nov 28;100(3):246–255. doi: 10.1113/jphysiol.1941.sp003939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EDWARDS C., HARRIS E. J. Factors influencing the sodium movement in frog muscle with a discussion of the mechanism of sodium movement. J Physiol. 1957 Mar 11;135(3):567–580. doi: 10.1113/jphysiol.1957.sp005731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRAZIER H. S., KEYNES R. D. The effect of metabolic inhibitors on the sodium fluxes in sodium-loaded frog sartorius muscle. J Physiol. 1959 Oct;148:362–378. doi: 10.1113/jphysiol.1959.sp006293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOODFORD P. J., LUELLMANN H. The uptake of ethanesulphonate-35S ions by muscular tissue. J Physiol. 1962 Apr;161:54–61. doi: 10.1113/jphysiol.1962.sp006872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS E. J. Anion interaction in frog muscle. J Physiol. 1958 Apr 30;141(2):351–365. doi: 10.1113/jphysiol.1958.sp005979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS E. J., SJODIN R. A. Kinetics of exchange and net movement of frog muscle potassium. J Physiol. 1961 Feb;155:221–245. doi: 10.1113/jphysiol.1961.sp006624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J Physiol. 1960 Sep;153:370–385. doi: 10.1113/jphysiol.1960.sp006540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUTTER O. F., NOBLE D. The chloride conductance of frog skeletal muscle. J Physiol. 1960 Apr;151:89–102. [PMC free article] [PubMed] [Google Scholar]
- JOHNSON J. A. Kinetics of release of radioactive sodium, sulfate and sucrose from the frog sartorius muscle. Am J Physiol. 1955 May;181(2):263–268. doi: 10.1152/ajplegacy.1955.181.2.263. [DOI] [PubMed] [Google Scholar]
- KEYNES R. D., MAISEL G. W. The energy requirement for sodium extrusion from a frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):383–392. doi: 10.1098/rspb.1954.0031. [DOI] [PubMed] [Google Scholar]
- KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NORMAN D., MENOZZI P., REID D., LESTER G., HECHTER O. Action of insulin on sugar permeability in rat diaphragm muscle. J Gen Physiol. 1959 Jul 20;42(6):1277–1299. doi: 10.1085/jgp.42.6.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHAW F. H., SIMON S. E. The nature of the sodium and potassium balance in nerve and muscle cells. Aust J Exp Biol Med Sci. 1955 Apr;33(2):153–177. doi: 10.1038/icb.1955.17. [DOI] [PubMed] [Google Scholar]
- SIMON S. E., SHAW F. H., BENNETT S., MULLER M. The relationship between sodium, potassium, and chloride in amphibian muscle. J Gen Physiol. 1957 May 20;40(5):753–777. doi: 10.1085/jgp.40.5.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TASKER P., SIMON S. E., JOHNSTONE B. M., SHANKLY K. H., SHAW F. H. The dimensions of the extracellular space in sartorius muscle. J Gen Physiol. 1959 Sep;43:39–53. doi: 10.1085/jgp.43.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]