Full text
PDF![128](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/69a9c3c67437/jphysiol01252-0152.png)
![129](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/abea31ba8f4f/jphysiol01252-0153.png)
![130](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/eeaefb380d5a/jphysiol01252-0154.png)
![131](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/c338ec6786b1/jphysiol01252-0155.png)
![132](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/e79b1aab28da/jphysiol01252-0156.png)
![133](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/48de19fb8d0b/jphysiol01252-0157.png)
![134](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/34eb6289c671/jphysiol01252-0158.png)
![135](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/00b35b669f42/jphysiol01252-0159.png)
![136](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/4a7b5182c8fb/jphysiol01252-0160.png)
![137](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/565dd7854c64/jphysiol01252-0161.png)
![138](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/4d4085c31cfb/jphysiol01252-0162.png)
![139](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/882eea9a3d35/jphysiol01252-0163.png)
![140](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/fd934dd84aec/jphysiol01252-0164.png)
![141](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/01ce43e901fb/jphysiol01252-0165.png)
![142](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/49ce02c6ad42/jphysiol01252-0166.png)
![143](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/6726d8d0710a/jphysiol01252-0167.png)
![144](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/43419780a1be/jphysiol01252-0168.png)
![145](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/5dbe1ce9c113/jphysiol01252-0169.png)
![146](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f898/1359582/9f3ce0119ef6/jphysiol01252-0170.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROOKS C. M., KOIZUMI K., MALCOLM J. L. Effects of changes in temperature on reactions of spinal cord. J Neurophysiol. 1955 May;18(3):205–216. doi: 10.1152/jn.1955.18.3.205. [DOI] [PubMed] [Google Scholar]
- Barron D. H., Matthews B. H. Intermittent conduction in the spinal cord. J Physiol. 1935 Aug 22;85(1):73–103. doi: 10.1113/jphysiol.1935.sp003303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barron D. H., Matthews B. H. The interpretation of potential changes in the spinal cord. J Physiol. 1938 Apr 14;92(3):276–321. doi: 10.1113/jphysiol.1938.sp003603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ECCLES J. C., ECCLES R. M., LUNDBERG A. Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. J Physiol. 1957 Sep 30;138(2):227–252. doi: 10.1113/jphysiol.1957.sp005849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ECCLES J. C., ECCLES R. M., LUNDBERG A. Synaptic actions on motoneurones in relation to the two components of the group I muscle afferent volley. J Physiol. 1957 May 23;136(3):527–546. doi: 10.1113/jphysiol.1957.sp005778. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ECCLES J. C., KRNJEVIC K. Potential changes recorded inside primary afferent fibres within the spinal cord. J Physiol. 1959 Dec;149:250–273. doi: 10.1113/jphysiol.1959.sp006338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ECCLES J. C., KRNJEVIC K. Presynaptic changes associated with post-tetanic potentiation in the spinal cord. J Physiol. 1959 Dec;149:274–287. doi: 10.1113/jphysiol.1959.sp006339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ECCLES J. C., RALL W. Effects induced in a monosynaptic reflex path by its activation. J Neurophysiol. 1951 Sep;14(5):353–376. doi: 10.1152/jn.1951.14.5.353. [DOI] [PubMed] [Google Scholar]
- FRANK K., FUORTES M. G. Potentials recorded from the spinal cord with microelectrodes. J Physiol. 1955 Dec 29;130(3):625–654. doi: 10.1113/jphysiol.1955.sp005432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HABGOOD J. S. Antidromic impulses in the dorsal roots. J Physiol. 1953 Aug;121(2):264–274. doi: 10.1113/jphysiol.1953.sp004946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOKETSU K. Intracellular potential changes of primary afferent nerve fibers in spinal cords of cats. J Neurophysiol. 1956 Sep;19(5):375–392. doi: 10.1152/jn.1956.19.5.375. [DOI] [PubMed] [Google Scholar]
- LAPORTE Y., BESSOU P. Etude des sous-groupes lent et rapide du groupe I (fibres afférentes d'origine musculaire de grand diamètre) chez le chat. J Physiol (Paris) 1957 Nov;49(5):1025–1037. [PubMed] [Google Scholar]
- LLOYD D. P. C. Electrotonus in dorsal nerve roots. Cold Spring Harb Symp Quant Biol. 1952;17:203–219. doi: 10.1101/sqb.1952.017.01.020. [DOI] [PubMed] [Google Scholar]
- LLOYD D. P. C. Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J Gen Physiol. 1949 Nov;33(2):147–170. doi: 10.1085/jgp.33.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALL P. D. Repetitive discharge of neurons. J Neurophysiol. 1959 May;22(3):305–320. doi: 10.1152/jn.1959.22.3.305. [DOI] [PubMed] [Google Scholar]
- WILSON V. J. Post-tetanic potentiation of polysynaptic reflexes of the spinal cord. J Gen Physiol. 1955 Nov 20;39(2):197–206. doi: 10.1085/jgp.39.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]