Full text
PDF![503](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/665fafbbe3a7/jphysiol01245-0125.png)
![504](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/83249dfc89d9/jphysiol01245-0126.png)
![505](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/310a718f7506/jphysiol01245-0127.png)
![506](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/1f165d78c3af/jphysiol01245-0128.png)
![507](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/df4e44ef5a10/jphysiol01245-0129.png)
![508](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/0acc234fa944/jphysiol01245-0130.png)
![509](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/9e2e9a30b115/jphysiol01245-0131.png)
![510](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/3301158d96dc/jphysiol01245-0132.png)
![511](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/6675e71cdcfc/jphysiol01245-0133.png)
![512](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/178d4b3de573/jphysiol01245-0134.png)
![513](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/0449e51f8279/jphysiol01245-0135.png)
![514](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/2b8bbfe703ae/jphysiol01245-0136.png)
![515](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/0c1aa7548c5d/jphysiol01245-0137.png)
![516](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/7ad5760dfd73/jphysiol01245-0138.png)
![517](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/fdad42d3d605/jphysiol01245-0139.png)
![518](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/4dc9cd6e7053/jphysiol01245-0140.png)
![519](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/6c7b690d2d8a/jphysiol01245-0141.png)
![520](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/a55eee55471b/jphysiol01245-0142.png)
![521](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/200bc1901916/jphysiol01245-0143.png)
![522](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/45092c540953/jphysiol01245-0144.png)
![523](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/063e428ccdcb/jphysiol01245-0145.png)
![524](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/74e0204c1276/jphysiol01245-0146.png)
![525](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/21ae6d9e4bf4/jphysiol01245-0147.png)
![526](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/80f38a2b47d5/jphysiol01245-0148.png)
![527](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/1359609/0029f145931c/jphysiol01245-0149.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSEN B., USSING H. H. Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta Physiol Scand. 1957 Jun 8;39(2-3):228–239. doi: 10.1111/j.1748-1716.1957.tb01425.x. [DOI] [PubMed] [Google Scholar]
- AURICCHIO G., BARANY E. H. On the role of osmotic water transport in the secretion of the aqueous humour. Acta Physiol Scand. 1959 Mar 31;45:190–210. doi: 10.1111/j.1748-1716.1959.tb01690.x. [DOI] [PubMed] [Google Scholar]
- BLINKS L. R., AIRTH R. L. Electroosmosis in Nitella. J Gen Physiol. 1957 Nov 20;41(2):383–396. doi: 10.1085/jgp.41.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CURRAN P. F. Na, Cl, and water transport by rat ileum in vitro. J Gen Physiol. 1960 Jul;43:1137–1148. doi: 10.1085/jgp.43.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CURRAN P. F., SOLOMON A. K. Ion and water fluxes in the ileum of rats. J Gen Physiol. 1957 Sep 20;41(1):143–168. doi: 10.1085/jgp.41.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIAMOND J. M. The mechanism of solute transport by the gall-bladder. J Physiol. 1962 May;161:474–502. doi: 10.1113/jphysiol.1962.sp006899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIAMOND J. M. The reabsorptive function of the gall-bladder. J Physiol. 1962 May;161:442–473. doi: 10.1113/jphysiol.1962.sp006898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DURBIN R. P., FRANK H., SOLOMON A. K. Water flow through frog gastric mucosa. J Gen Physiol. 1956 Mar 20;39(4):535–551. doi: 10.1085/jgp.39.4.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DURBIN R. P. Osmotic flow of water across permeable cellulose membranes. J Gen Physiol. 1960 Nov;44:315–326. doi: 10.1085/jgp.44.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FISHER R. B. The absorption of water and of some small solute molecules from the isolated small intestine of the rat. J Physiol. 1955 Dec 29;130(3):655–664. doi: 10.1113/jphysiol.1955.sp005433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLDSTEIN D. A., SOLOMON A. K. Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J Gen Physiol. 1960 Sep;44:1–17. doi: 10.1085/jgp.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRIM E., SMITH G. A. Water flux rates across dog gallbladder wall. Am J Physiol. 1957 Dec;191(3):555–560. doi: 10.1152/ajplegacy.1957.191.3.555. [DOI] [PubMed] [Google Scholar]
- KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
- KIRSCHNER L. B., MAXWELL R., FLEMING D. Non-osmotic water movement across the isolated frog skin. J Cell Comp Physiol. 1960 Jun;55:267–273. doi: 10.1002/jcp.1030550309. [DOI] [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H. The contributions of diffusion and flow to the passage of D2O through living membranes; effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol Scand. 1953 Mar 31;28(1):60–76. doi: 10.1111/j.1748-1716.1953.tb00959.x. [DOI] [PubMed] [Google Scholar]
- MESCHIA G., SETNIKAR I. Experimental study of osmosis through a collodion membrane. J Gen Physiol. 1958 Nov 20;42(2):429–444. doi: 10.1085/jgp.42.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARSONS D. S., WINGATE D. L. Fluid movements across wall of rat small intestine in vitro. Biochim Biophys Acta. 1958 Dec;30(3):666–667. doi: 10.1016/0006-3002(58)90133-1. [DOI] [PubMed] [Google Scholar]
- PARSONS D. S., WINGATE D. L. The effect of osmotic gradients on fluid transfer across rat intestine in vitro. Biochim Biophys Acta. 1961 Jan 1;46:170–183. doi: 10.1016/0006-3002(61)90660-6. [DOI] [PubMed] [Google Scholar]
- WHITTEMBURY G., OKEN D. E., WINDHAGER E. E., SOLOMON A. K. Single proximal tubules of Necturus kidney. IV. Dependence of H20 movement on osmotic gradients. Am J Physiol. 1959 Nov;197:1121–1127. doi: 10.1152/ajplegacy.1959.197.5.1121. [DOI] [PubMed] [Google Scholar]