Full text
PDF![61](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/f5a2b74b6b0a/jphysiol01235-0078.png)
![62](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/535a1636d6b7/jphysiol01235-0079.png)
![63](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/96a66f6d0f8b/jphysiol01235-0080.png)
![64](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/57d38e3863f2/jphysiol01235-0081.png)
![65](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/d321ff409f0a/jphysiol01235-0082.png)
![66](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/af5fc26c97fb/jphysiol01235-0083.png)
![67](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/99636e00d536/jphysiol01235-0084.png)
![68](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/ce056458d32f/jphysiol01235-0085.png)
![69](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/96396ab70503/jphysiol01235-0086.png)
![70](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/b54e201eefb8/jphysiol01235-0087.png)
![71](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/d60cba77c0c5/jphysiol01235-0088.png)
![72](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/51afcfdf0a10/jphysiol01235-0089.png)
![73](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/3e5335229c11/jphysiol01235-0090.png)
![74](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/7b0b08d27580/jphysiol01235-0091.png)
![75](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/a3634f294dcb/jphysiol01235-0092.png)
![76](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/dd685632a144/jphysiol01235-0093.png)
![77](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/5e3bc6aea781/jphysiol01235-0094.png)
![78](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/47ebe4614d38/jphysiol01235-0095.png)
![79](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/72cfc38b220f/jphysiol01235-0096.png)
![80](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/bd98294877a0/jphysiol01235-0097.png)
![81](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/a3246f812bd0/jphysiol01235-0098.png)
![82](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/d5d38feb6f5a/jphysiol01235-0099.png)
![83](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/62edd4d8dd9f/jphysiol01235-0100.png)
![84](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/777d3834a8c0/jphysiol01235-0101.png)
![85](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/7c6bdbf2e946/jphysiol01235-0102.png)
![86](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/1a98a8e0b57d/jphysiol01235-0103.png)
![87](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/10b26d5fa7c4/jphysiol01235-0104.png)
![88](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/190c3a70fbbd/jphysiol01235-0105.png)
![89](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/af8f00ed83dc/jphysiol01235-0106.png)
![90](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/3487b778b837/jphysiol01235-0107.png)
![91](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/da4be0ed2905/jphysiol01235-0108.png)
![92](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/e01cb6ce33b4/jphysiol01235-0109.png)
![93](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/ff9b81366431/jphysiol01235-0110.png)
![94](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/2e8fb4abe851/jphysiol01235-0111.png)
![95](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/152e8c57ba06/jphysiol01235-0112.png)
![96](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/fe6d2dbe7c4e/jphysiol01235-0113.png)
![97](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/a5bbfd04f1dd/jphysiol01235-0114.png)
![98](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/a460a2fa305d/jphysiol01235-0115.png)
![99](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/931720c4fc57/jphysiol01235-0116.png)
![100](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/d8a8fa6d7b56/jphysiol01235-0117.png)
![101](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/f6280a550a7b/jphysiol01235-0118.png)
![102](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/31a87958b39f/jphysiol01235-0119.png)
![103](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a22a/1359689/a6afcdce13bd/jphysiol01235-0120.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADRIAN R. H., FREYGANG W. H. Potassium conductance of frog muscle membrane under controlled voltage. J Physiol. 1962 Aug;163:104–114. doi: 10.1113/jphysiol.1962.sp006960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ADRIAN R. H. Potassium chloride movement and the membrane potential of frog muscle. J Physiol. 1960 Apr;151:154–185. [PMC free article] [PubMed] [Google Scholar]
- BUCHTHAL F., STEN-KNUDSEN O. Impulse propagation in striated muscle fibers and the role of the internal currents in activation. Ann N Y Acad Sci. 1959 Aug 28;81:422–445. doi: 10.1111/j.1749-6632.1959.tb49325.x. [DOI] [PubMed] [Google Scholar]
- Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARMELIET E. E. Chloride ions and the membrane potential of Purkinje fibres. J Physiol. 1961 Apr;156:375–388. doi: 10.1113/jphysiol.1961.sp006682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FALK G., LANDA J. F. Effects of potassium on frog skeletal muscle in a chloride-deficient medium. Am J Physiol. 1960 Jun;198:1225–1231. doi: 10.1152/ajplegacy.1960.198.6.1225. [DOI] [PubMed] [Google Scholar]
- FALK G., LANDA J. F. Prolonged response of skeletal muscle in the absence of penetrating anions. Am J Physiol. 1960 Feb;198:289–299. doi: 10.1152/ajplegacy.1960.198.2.289. [DOI] [PubMed] [Google Scholar]
- FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. Movements of Na and K in single muscle fibres. J Physiol. 1959 Mar 3;145(2):405–432. doi: 10.1113/jphysiol.1959.sp006150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J Physiol. 1960 Sep;153:370–385. doi: 10.1113/jphysiol.1960.sp006540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUTTER O. F., NOBLE D. Rectifying properties of heart muscle. Nature. 1960 Nov 5;188:495–495. doi: 10.1038/188495a0. [DOI] [PubMed] [Google Scholar]
- HUTTER O. F., NOBLE D. The chloride conductance of frog skeletal muscle. J Physiol. 1960 Apr;151:89–102. [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F. Local activation of muscle. Ann N Y Acad Sci. 1959 Aug 28;81:446–452. doi: 10.1111/j.1749-6632.1959.tb49326.x. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JENERICK H. P., GERARD R. W. Membrane potential and threshold of single muscle fibers. J Cell Physiol. 1953 Aug;42(1):79–102. doi: 10.1002/jcp.1030420106. [DOI] [PubMed] [Google Scholar]
- JENERICK H. The control of membrane ionic currents by the membrane potential of muscle. J Gen Physiol. 1959 May 20;42(5):923–930. doi: 10.1085/jgp.42.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOBLE D. A modification of the Hodgkin--Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol. 1962 Feb;160:317–352. doi: 10.1113/jphysiol.1962.sp006849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RENKIN E. M. Permeability of frog skeletal muscle cells to choline. J Gen Physiol. 1961 Jul;44:1159–1164. doi: 10.1085/jgp.44.6.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TASAKI I., HAGIWARA S. Capacity of muscle fiber membrane. Am J Physiol. 1957 Mar;188(3):423–429. doi: 10.1152/ajplegacy.1957.188.3.423. [DOI] [PubMed] [Google Scholar]
- WHALEN W. J. The relation of work and oxygen consumption in isolated strips of cat and rat myocardium. J Physiol. 1961 Jun;157:1–17. doi: 10.1113/jphysiol.1961.sp006701. [DOI] [PMC free article] [PubMed] [Google Scholar]