Full text
PDF![389](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/5fcd1b86f566/jphysiol01265-0183.png)
![390](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/f23ef45dfc01/jphysiol01265-0184.png)
![391](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/102cacf9025b/jphysiol01265-0185.png)
![392](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/4caef94d4f90/jphysiol01265-0186.png)
![393](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/8caddf8719a8/jphysiol01265-0187.png)
![394](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/b3b438971d48/jphysiol01265-0188.png)
![395](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/ee6dff1b8217/jphysiol01265-0189.png)
![396](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/a3281325c8ae/jphysiol01265-0190.png)
![397](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/a36883495b28/jphysiol01265-0191.png)
![398](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/96b7095549c4/jphysiol01265-0192.png)
![399](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/504bf8fd03f4/jphysiol01265-0193.png)
![400](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/4b1f6d7b1b74/jphysiol01265-0194.png)
![401](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/4cd6df11227d/jphysiol01265-0195.png)
![402](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/a56884bbea69/jphysiol01265-0196.png)
![403](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/de0c76d6cb73/jphysiol01265-0197.png)
![404](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/956f9aa771a4/jphysiol01265-0198.png)
![405](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/d2adfb006640/jphysiol01265-0199.png)
![406](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/5fe642981a24/jphysiol01265-0200.png)
![407](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/7f2731022b35/jphysiol01265-0201.png)
![408](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/76aad5b8c1c5/jphysiol01265-0202.png)
![409](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/74b288a373d2/jphysiol01265-0203.png)
![410](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/3da731d28afc/jphysiol01265-0204.png)
![411](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/8dfa39f1ca36/jphysiol01265-0205.png)
![412](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/39b697f0c39f/jphysiol01265-0206.png)
![413](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/3f351fd391ab/jphysiol01265-0207.png)
![414](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4004/1359893/f1bacd58ac82/jphysiol01265-0208.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURKE W., GINSBORG B. L. The electrical properties of the slow muscle fibre membrane. J Physiol. 1956 Jun 28;132(3):586–598. doi: 10.1113/jphysiol.1956.sp005551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREENGARD P., STRAUB R. W. After-potentials in mammalian non-myelinated nerve fibres. J Physiol. 1958 Dec 30;144(3):442–462. doi: 10.1113/jphysiol.1958.sp006112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREENGARD P., STRAUB R. W. Restoration by barium of action potentials in sodium-deprived mammalian B and C fibres. J Physiol. 1959 Mar 12;145(3):562–569. doi: 10.1113/jphysiol.1959.sp006162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NARAHASHI T., YAMASAKI T. Behaviors of membrane potential in the cockroach giant axons poisoned by DDT. J Cell Comp Physiol. 1960 Apr;55:131–142. doi: 10.1002/jcp.1030550204. [DOI] [PubMed] [Google Scholar]
- NARAHASHI T., YAMASAKI T. Mechanism of increase in negative after-potential by dicophanum (DDT) in the giant axons of the cockroach. J Physiol. 1960 Jun;152:122–140. doi: 10.1113/jphysiol.1960.sp006475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NARAHASHI T., YAMASAKI T. Mechanism of the after-potential production in the giant axons of the cockroach. J Physiol. 1960 Apr;151:75–88. [PMC free article] [PubMed] [Google Scholar]
- SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. II. The action potential and excitation. Pharmacol Rev. 1958 Jun;10(2):165–273. [PubMed] [Google Scholar]
- WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YAMASAKI T., NARAHASHI T. Effects of potassium and sodium ions on the resting and action potentials of the giant axon of the cockroach. Nature. 1958 Dec 27;182(4652):1805–1805. doi: 10.1038/1821805a0. [DOI] [PubMed] [Google Scholar]