Full text
PDF![257](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/1c23309d4cdd/jphysiol01257-0053.png)
![258](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/db7191574dc6/jphysiol01257-0054.png)
![259](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/674692d21a0a/jphysiol01257-0055.png)
![260](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/f44438809600/jphysiol01257-0056.png)
![261](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/5dafd81ce385/jphysiol01257-0057.png)
![262](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/75b737d1f1ea/jphysiol01257-0058.png)
![263](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/d4c16266ce4c/jphysiol01257-0059.png)
![264](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/5ecc03783687/jphysiol01257-0060.png)
![265](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/99d3cd03617d/jphysiol01257-0061.png)
![266](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/98efeb35c86a/jphysiol01257-0062.png)
![267](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/79f45e0104cf/jphysiol01257-0063.png)
![268](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/c5dfe002b06b/jphysiol01257-0064.png)
![269](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/dd63ab076d14/jphysiol01257-0065.png)
![270](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/7fe74f583f48/jphysiol01257-0066.png)
![271](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/8fb81211a6b6/jphysiol01257-0067.png)
![272](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/fb5ddd5c60c8/jphysiol01257-0068.png)
![273](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/ad3d8295f985/jphysiol01257-0069.png)
![274](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/66ce30988ae9/jphysiol01257-0070.png)
![275](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/e2eaf414fb9c/jphysiol01257-0071.png)
![276](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/6ed51ecb0c46/jphysiol01257-0072.png)
![277](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/d11305640317/jphysiol01257-0073.png)
![278](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/da9eeae11edd/jphysiol01257-0074.png)
![279](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/129119bd7dff/jphysiol01257-0075.png)
![280](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fc/1359966/212dd2a78fa5/jphysiol01257-0076.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRINDLEY G. S. Responses to illumination recorded by microelectrodes from the frog's retina. J Physiol. 1956 Nov 28;134(2):360–384. doi: 10.1113/jphysiol.1956.sp005649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRINDLEY G. S. The sources of slow electrical activity in the frog's retina. J Physiol. 1958 Feb 17;140(2):247–261. doi: 10.1113/jphysiol.1958.sp005931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROWN K. T., TASAKI K. Localization of electrical activity in the cat retina by an electrode marking method. J Physiol. 1961 Sep;158:281–295. doi: 10.1113/jphysiol.1961.sp006769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROWN K. T., WIESEL T. N. Analysis of the intraretinal electroretinogram in the intact cat eye. J Physiol. 1961 Sep;158:229–256. doi: 10.1113/jphysiol.1961.sp006767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROWN K. T., WIESEL T. N. Intraretinal recording in the unopened cat eye. Am J Ophthalmol. 1958 Sep;46(3 Pt 2):91–98. doi: 10.1016/0002-9394(58)90058-8. [DOI] [PubMed] [Google Scholar]
- BROWN K. T., WIESEL T. N. Intraretinal recording with micropipette electrodes in the intact cat eye. J Physiol. 1959 Dec;149:537–562. doi: 10.1113/jphysiol.1959.sp006360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRESCITELLI F. Physiology of vision. Annu Rev Physiol. 1960;22:525–578. doi: 10.1146/annurev.ph.22.030160.002521. [DOI] [PubMed] [Google Scholar]
- Granit R. The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiol. 1933 Feb 8;77(3):207–239. doi: 10.1113/jphysiol.1933.sp002964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOELL W. K. The origin of the electroretinogram. Am J Ophthalmol. 1954 Jul;38(12):78–90. doi: 10.1016/0002-9394(54)90012-4. [DOI] [PubMed] [Google Scholar]
- PORTER K. R. The submicroscopic morphology of protoplasm. Harvey Lect. 1955;51:175–228. [PubMed] [Google Scholar]
- TOMITA T., FUNAISHI A. Studies on the intraretinal action potential. II. Effects of some chemical agents upon it. Jpn J Physiol. 1951 Nov;2(2):147–153. doi: 10.2170/jjphysiol.2.147. [DOI] [PubMed] [Google Scholar]
- TOMITA T., MIZUNO H. B., IDA T. Studies on the intraretinal action potential. III. Intraretinal negative potential as compared with b wave in the ERG. Jpn J Physiol. 1952 Feb;2(3):171–176. [PubMed] [Google Scholar]
- TOMITA T., MURAKAMI M., HASHIMOTO Y. On the R membrane in the frog's eye: its localization, and relation to the retinal action potential. J Gen Physiol. 1960 Jul;43(6 Suppl):81–94. doi: 10.1085/jgp.43.6.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TOMITA T., TORIHAMA Y. Further study on the intraretinal action potentials and on the site of ERG generation. Jpn J Physiol. 1956 Jun 15;6(2):118–136. doi: 10.2170/jjphysiol.6.118. [DOI] [PubMed] [Google Scholar]
- WATANABE K., TOSAKA T., YOKOTA T. Effects of extrinsic electric current on the cyprinid fish EIRG (S-potential). Jpn J Physiol. 1960 Apr 29;10:132–141. doi: 10.2170/jjphysiol.10.132. [DOI] [PubMed] [Google Scholar]
- YAMADA E. A peculiar lamellated body observed in the cells of the pigment epithelium of the retina of the bat, Pipistrellus abramus. J Biophys Biochem Cytol. 1958 May 25;4(3):329–330. doi: 10.1083/jcb.4.3.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YAMASHITA E. Some analyses of slow potentials of toad's retina. Tohoku J Exp Med. 1959 Aug 25;70:221–233. doi: 10.1620/tjem.70.221. [DOI] [PubMed] [Google Scholar]