Full text
PDF![341](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/32b69e692f16/jphysiol01383-0086.png)
![342](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/fa5588938801/jphysiol01383-0087.png)
![343](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/79b4f678d7c3/jphysiol01383-0088.png)
![344](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/9d40219b07ff/jphysiol01383-0089.png)
![345](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/afa954224030/jphysiol01383-0090.png)
![346](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/e79649b7efc7/jphysiol01383-0091.png)
![347](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/0ef4a3df76e9/jphysiol01383-0092.png)
![348](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/7e389dedc5a6/jphysiol01383-0093.png)
![349](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/eab1de7fda4e/jphysiol01383-0094.png)
![350](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/f3443f2da786/jphysiol01383-0095.png)
![351](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/f510eb216fd2/jphysiol01383-0096.png)
![352](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/2145a038507e/jphysiol01383-0097.png)
![353](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/a2ed52e21c0a/jphysiol01383-0098.png)
![354](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/197e6f93c458/jphysiol01383-0099.png)
![355](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/49b0e6f70054/jphysiol01383-0100.png)
![356](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/685bb8f41c5e/jphysiol01383-0101.png)
![357](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/3c603d567ec3/jphysiol01383-0102.png)
![358](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/6ecaaca8af83/jphysiol01383-0103.png)
![359](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/2efe3571d64d/jphysiol01383-0104.png)
![360](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/40cf897c6b7d/jphysiol01383-0105.png)
![361](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/7e5acbb2bf9d/jphysiol01383-0106.png)
![362](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/bc63196923d1/jphysiol01383-0107.png)
![363](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/4a1785219c33/jphysiol01383-0108.png)
![364](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/a0ba577c02d1/jphysiol01383-0109.png)
![365](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/8033a3e992b9/jphysiol01383-0110.png)
![366](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/54513a4c02e8/jphysiol01383-0111.png)
![367](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/f2d843f28326/jphysiol01383-0112.png)
![368](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/5316dcd09551/jphysiol01383-0113.png)
![369](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/8096676a6f6a/jphysiol01383-0114.png)
![370](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/f81923ba4dac/jphysiol01383-0115.png)
![371](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/33d16ffd3768/jphysiol01383-0116.png)
![372](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/7b86d4a55194/jphysiol01383-0117.png)
![373](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/c66ac92665f7/jphysiol01383-0118.png)
![374](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/da997cb0f6e4/jphysiol01383-0119.png)
![375](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/4a6d63d8ecf3/jphysiol01383-0120.png)
![376](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/1363434/4c4574a45796/jphysiol01383-0121.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Geren B. B., Schmitt F. O. THE STRUCTURE OF THE SCHWANN CELL AND ITS RELATION TO THE AXON IN CERTAIN INVERTEBRATE NERVE FIBERS. Proc Natl Acad Sci U S A. 1954 Sep;40(9):863–870. doi: 10.1073/pnas.40.9.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. The components of membrane conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):473–496. doi: 10.1113/jphysiol.1952.sp004718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol. 1949 Aug;109(1-2):240–249. doi: 10.1113/jphysiol.1949.sp004388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D., LEWIS P. R. The sodium and potassium content of cephalopod nerve fibers. J Physiol. 1951 Jun;114(1-2):151–182. doi: 10.1113/jphysiol.1951.sp004609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHANES A. M. Effect of temperature on potassium liberation during nerve activity. Am J Physiol. 1954 Jun;177(3):377–382. doi: 10.1152/ajplegacy.1954.177.3.377. [DOI] [PubMed] [Google Scholar]
- SHANES A. M., GRUNDFEST H., FREYGANG W. Low level impedance changes following the spike in the squid giant axon before and after treatment with "veratrine" alkaloids. J Gen Physiol. 1953 Sep;37(1):39–51. doi: 10.1085/jgp.37.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHANES A. M. Potassium movement in relation to nerve activity. J Gen Physiol. 1951 Jul;34(6):795–807. doi: 10.1085/jgp.34.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHANES A. M. The ultraviolet spectra and neurophysiological effects of "veratrine" alkaloids. J Pharmacol Exp Ther. 1952 Jun;105(2):216–231. [PubMed] [Google Scholar]
- WEIDMANN S. Electrical characteristics of Sepia axons. J Physiol. 1951 Jul;114(3):372–381. doi: 10.1113/jphysiol.1951.sp004628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]