Skip to main content
Immunology logoLink to Immunology
. 1997 Aug;91(4):643–648. doi: 10.1046/j.1365-2567.1997.d01-2263.x

Characterization of a constitutive type III nitric oxide synthase in human U937 monocytic cells: stimulation by soluble CD23.

V Roman 1, N Dugas 1, A Abadie 1, C Amirand 1, H Zhao 1, B Dugas 1, J P Kolb 1
PMCID: PMC1363888  PMID: 9378507

Abstract

The soluble cleavage fragment of the low-affinity immunoglobulin E (IgE) receptor/CD23 (sCD23 25000 MW) and antibodies directed against their receptors on monocytes, CD11b and CD11c, stimulate the production of nitric oxide (NO) by these cells and we have suggested that the enzyme involved could be related to the endothelial constitutive type III nitric oxide synthase (ecNOS). In the present work, we have analysed the characteristic properties of this NOS isoform in the model of the human promonocytic cells U937 By reverse-transcription polymerase chain reaction (RT-PCR), the presence of an mRNA coding for type III NOS was found in U937 cells and the corresponding protein was detected by immunofluorescence in permeabilized cells with a specific anti-ecNOS monoclonal antibody (mAb). Membrane extracts displayed a NOS activity dependent on the presence of calcium and calmodulin in the reaction medium and that was abrogated in the presence of EGTA. Recombinant soluble CD23 (25000 MW) was found to trigger an NO-dependent cGMP accumulation in these cells, which was abrogated by calcium chelators and inhibitors of the calcium/calmodulin complex. Moreover, sCD23 elicited a transient augmentation of intracytoplasmic free calcium concentration [Ca2+]i that was dependent on the presence of calcium in the external buffer and was prevented in the presence of EGTA, indicating that it was due to a calcium influx. In conclusion, human promonocytic cells such as U937 exhibit a functional type III NOS that can be stimulated by calcium-raising agents, such as sCD23.

Full text

PDF
643

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E. On the expression of nitric oxide synthase by human macrophages. Why no NO? J Leukoc Biol. 1995 Dec;58(6):643–649. doi: 10.1002/jlb.58.6.643. [DOI] [PubMed] [Google Scholar]
  2. Armant M., Ishihara H., Rubio M., Delespesse G., Sarfati M. Regulation of cytokine production by soluble CD23: costimulation of interferon gamma secretion and triggering of tumor necrosis factor alpha release. J Exp Med. 1994 Sep 1;180(3):1005–1011. doi: 10.1084/jem.180.3.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armant M., Rubio M., Delespesse G., Sarfati M. Soluble CD23 directly activates monocytes to contribute to the antigen-independent stimulation of resting T cells. J Immunol. 1995 Nov 15;155(10):4868–4875. [PubMed] [Google Scholar]
  4. Aubry J. P., Pochon S., Graber P., Jansen K. U., Bonnefoy J. Y. CD21 is a ligand for CD23 and regulates IgE production. Nature. 1992 Aug 6;358(6386):505–507. doi: 10.1038/358505a0. [DOI] [PubMed] [Google Scholar]
  5. Bansal A. S., MacGregor A. J., Pumphrey R. S., Silman A. J., Ollier W. E., Wilson P. B. Increased levels of sCD23 in rheumatoid arthritis are related to disease status. Clin Exp Rheumatol. 1994 May-Jun;12(3):281–285. [PubMed] [Google Scholar]
  6. Bonnefoy J. Y., Aubry J. P., Peronne C., Wijdenes J., Banchereau J. Production and characterization of a monoclonal antibody specific for the human lymphocyte low affinity receptor for IgE: CD 23 is a low affinity receptor for IgE. J Immunol. 1987 May 1;138(9):2970–2978. [PubMed] [Google Scholar]
  7. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  8. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Busse R., Mülsch A. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett. 1990 Jun 4;265(1-2):133–136. doi: 10.1016/0014-5793(90)80902-u. [DOI] [PubMed] [Google Scholar]
  10. Chartrain N. A., Geller D. A., Koty P. P., Sitrin N. F., Nussler A. K., Hoffman E. P., Billiar T. R., Hutchinson N. I., Mudgett J. S. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem. 1994 Mar 4;269(9):6765–6772. [PubMed] [Google Scholar]
  11. Chen P. F., Tsai A. L., Berka V., Wu K. K. Endothelial nitric-oxide synthase. Evidence for bidomain structure and successful reconstitution of catalytic activity from two separate domains generated by a baculovirus expression system. J Biol Chem. 1996 Jun 14;271(24):14631–14635. [PubMed] [Google Scholar]
  12. Delespesse G., Suter U., Mossalayi D., Bettler B., Sarfati M., Hofstetter H., Kilcherr E., Debre P., Dalloul A. Expression, structure, and function of the CD23 antigen. Adv Immunol. 1991;49:149–191. doi: 10.1016/s0065-2776(08)60776-2. [DOI] [PubMed] [Google Scholar]
  13. Denis M. Human monocytes/macrophages: NO or no NO? J Leukoc Biol. 1994 May;55(5):682–684. doi: 10.1002/jlb.55.5.682. [DOI] [PubMed] [Google Scholar]
  14. Dugas B., Mossalayi M. D., Damais C., Kolb J. P. Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol Today. 1995 Dec;16(12):574–580. doi: 10.1016/0167-5699(95)80080-8. [DOI] [PubMed] [Google Scholar]
  15. Dugas N., Mossalayi M. D., Calenda A., Léotard A., Bécherel P., Mentz F., Ouaaz F., Arock M., Debré P., Dornand J. Role of nitric oxide in the anti-tumoral effect of retinoic acid and 1,25-dihydroxyvitamin D3 on human promonocytic leukemic cells. Blood. 1996 Nov 1;88(9):3528–3534. [PubMed] [Google Scholar]
  16. Eigler A., Sinha B., Endres S. Nitric oxide-releasing agents enhance cytokine-induced tumor necrosis factor synthesis in human mononuclear cells. Biochem Biophys Res Commun. 1993 Oct 15;196(1):494–501. doi: 10.1006/bbrc.1993.2277. [DOI] [PubMed] [Google Scholar]
  17. Farrell A. J., Blake D. R., Palmer R. M., Moncada S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis. 1992 Nov;51(11):1219–1222. doi: 10.1136/ard.51.11.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Geller D. A., Lowenstein C. J., Shapiro R. A., Nussler A. K., Di Silvio M., Wang S. C., Nakayama D. K., Simmons R. L., Snyder S. H., Billiar T. R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3491–3495. doi: 10.1073/pnas.90.8.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gordon J. CD23: novel disease marker with a split personality. Clin Exp Immunol. 1991 Dec;86(3):356–359. doi: 10.1111/j.1365-2249.1991.tb02937.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Harris P., Ralph P. Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukoc Biol. 1985 Apr;37(4):407–422. doi: 10.1002/jlb.37.4.407. [DOI] [PubMed] [Google Scholar]
  21. Herbelin A., Elhadad S., Ouaaz F., de Groote D., Descamps-Latscha B. Soluble CD23 potentiates interleukin-1-induced secretion of interleukin-6 and interleukin-1 receptor antagonist by human monocytes. Eur J Immunol. 1994 Aug;24(8):1869–1873. doi: 10.1002/eji.1830240823. [DOI] [PubMed] [Google Scholar]
  22. Ignarro L. J. Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling. Pharmacol Toxicol. 1990 Jul;67(1):1–7. doi: 10.1111/j.1600-0773.1990.tb00772.x. [DOI] [PubMed] [Google Scholar]
  23. King J. M., Srivastava K. D., Stefano G. B., Bilfinger T. V., Bahou W. F., Magazine H. I. Human monocyte adhesion is modulated by endothelin B receptor-coupled nitric oxide release. J Immunol. 1997 Jan 15;158(2):880–886. [PubMed] [Google Scholar]
  24. Kolb J. P., Paul-Eugene N., Damais C., Yamaoka K., Drapier J. C., Dugas B. Interleukin-4 stimulates cGMP production by IFN-gamma-activated human monocytes. Involvement of the nitric oxide synthase pathway. J Biol Chem. 1994 Apr 1;269(13):9811–9816. [PubMed] [Google Scholar]
  25. Kolb J. P., Renard D., Dugas B., Genot E., Petit-Koskas E., Sarfati M., Delespesse G., Poggioli J. Monoclonal anti-CD23 antibodies induce a rise in [Ca2+]i and polyphosphoinositide hydrolysis in human activated B cells. Involvement of a Gp protein. J Immunol. 1990 Jul 15;145(2):429–437. [PubMed] [Google Scholar]
  26. Lecoanet-Henchoz S., Gauchat J. F., Aubry J. P., Graber P., Life P., Paul-Eugene N., Ferrua B., Corbi A. L., Dugas B., Plater-Zyberk C. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity. 1995 Jul;3(1):119–125. doi: 10.1016/1074-7613(95)90164-7. [DOI] [PubMed] [Google Scholar]
  27. Lyons C. R., Orloff G. J., Cunningham J. M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem. 1992 Mar 25;267(9):6370–6374. [PubMed] [Google Scholar]
  28. MacDonald R. J., Swift G. H., Przybyla A. E., Chirgwin J. M. Isolation of RNA using guanidinium salts. Methods Enzymol. 1987;152:219–227. doi: 10.1016/0076-6879(87)52023-7. [DOI] [PubMed] [Google Scholar]
  29. Maekawa N., Hosokawa H., Soh H., Kasahara M., Izumi H., Yodoi J., Asada Y. Serum levels of soluble CD23 in patients with bullous pemphigoid. J Dermatol. 1995 May;22(5):310–315. doi: 10.1111/j.1346-8138.1995.tb03394.x. [DOI] [PubMed] [Google Scholar]
  30. Marsden P. A., Schappert K. T., Chen H. S., Flowers M., Sundell C. L., Wilcox J. N., Lamas S., Michel T. Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett. 1992 Aug 3;307(3):287–293. doi: 10.1016/0014-5793(92)80697-f. [DOI] [PubMed] [Google Scholar]
  31. Martin J. H., Edwards S. W. Changes in mechanisms of monocyte/macrophage-mediated cytotoxicity during culture. Reactive oxygen intermediates are involved in monocyte-mediated cytotoxicity, whereas reactive nitrogen intermediates are employed by macrophages in tumor cell killing. J Immunol. 1993 Apr 15;150(8 Pt 1):3478–3486. [PubMed] [Google Scholar]
  32. Miyahara K., Kawamoto T., Sase K., Yui Y., Toda K., Yang L. X., Hattori R., Aoyama T., Yamamoto Y., Doi Y. Cloning and structural characterization of the human endothelial nitric-oxide-synthase gene. Eur J Biochem. 1994 Aug 1;223(3):719–726. doi: 10.1111/j.1432-1033.1994.tb19045.x. [DOI] [PubMed] [Google Scholar]
  33. Moncada S., Higgs E. A. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 1995 Oct;9(13):1319–1330. [PubMed] [Google Scholar]
  34. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  35. Nakane M., Schmidt H. H., Pollock J. S., Förstermann U., Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993 Jan 25;316(2):175–180. doi: 10.1016/0014-5793(93)81210-q. [DOI] [PubMed] [Google Scholar]
  36. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  37. Paul-Eugène N., Mossalayi D., Sarfati M., Yamaoka K., Aubry J. P., Bonnefoy J. Y., Dugas B., Kolb J. P. Evidence for a role of Fc epsilon RII/CD23 in the IL-4-induced nitric oxide production by normal human mononuclear phagocytes. Cell Immunol. 1995 Jul;163(2):314–318. doi: 10.1006/cimm.1995.1132. [DOI] [PubMed] [Google Scholar]
  38. Plater-Zyberk C., Bonnefoy J. Y. Marked amelioration of established collagen-induced arthritis by treatment with antibodies to CD23 in vivo. Nat Med. 1995 Aug;1(8):781–785. doi: 10.1038/nm0895-781. [DOI] [PubMed] [Google Scholar]
  39. Pollock J. S., Förstermann U., Mitchell J. A., Warner T. D., Schmidt H. H., Nakane M., Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10480–10484. doi: 10.1073/pnas.88.23.10480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Reiling N., Ulmer A. J., Duchrow M., Ernst M., Flad H. D., Hauschildt S. Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages. Eur J Immunol. 1994 Aug;24(8):1941–1944. doi: 10.1002/eji.1830240836. [DOI] [PubMed] [Google Scholar]
  41. Rosenkranz-Weiss P., Sessa W. C., Milstien S., Kaufman S., Watson C. A., Pober J. S. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest. 1994 May;93(5):2236–2243. doi: 10.1172/JCI117221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Saura M., Pérez-Sala D., Cañada F. J., Lamas S. Role of tetrahydrobiopterin availability in the regulation of nitric-oxide synthase expression in human mesangial cells. J Biol Chem. 1996 Jun 14;271(24):14290–14295. doi: 10.1074/jbc.271.24.14290. [DOI] [PubMed] [Google Scholar]
  43. Sessa W. C., Barber C. M., Lynch K. R. Mutation of N-myristoylation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein. Circ Res. 1993 Apr;72(4):921–924. doi: 10.1161/01.res.72.4.921. [DOI] [PubMed] [Google Scholar]
  44. Sánchez-Guerrero I., Albaladejo M. D., García-Alonso A. M., Muro M., Hernández J., Alvarez M. R. Soluble CD23 (sCD23) serum levels and lymphocyte subpopulations in peripheral blood in rhinitis and extrinsic and intrinsic asthma. Allergy. 1994 Sep;49(8):587–592. doi: 10.1111/j.1398-9995.1994.tb00123.x. [DOI] [PubMed] [Google Scholar]
  45. Vouldoukis I., Riveros-Moreno V., Dugas B., Ouaaz F., Bécherel P., Debré P., Moncada S., Mossalayi M. D. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7804–7808. doi: 10.1073/pnas.92.17.7804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weinberg J. B., Misukonis M. A., Shami P. J., Mason S. N., Sauls D. L., Dittman W. A., Wood E. R., Smith G. K., McDonald B., Bachus K. E. Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood. 1995 Aug 1;86(3):1184–1195. [PubMed] [Google Scholar]
  47. Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]
  48. al-Janadi M., al-Wabel A., Raziuddin S. Soluble CD23 and interleukin-4 levels in autoimmune chronic active hepatitis and systemic lupus erythematosus. Clin Immunol Immunopathol. 1994 Apr;71(1):33–37. doi: 10.1006/clin.1994.1048. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES