Skip to main content
Immunology logoLink to Immunology
. 1997 Sep;92(1):6–9. doi: 10.1046/j.1365-2567.1997.00358.x

Vaccination with recombinant vaccinia viruses protects mice against Mycobacterium tuberculosis infection.

X Zhu 1, N Venkataprasad 1, J Ivanyi 1, H M Vordermeier 1
PMCID: PMC1363974  PMID: 9370917

Abstract

A number of subunit-based vaccine candidates have recently begun to erode the exclusive position of Mycobacterium bovis bacillus Calmette-Guérin (BCG), which gives unpredictable and highly variable protection against tuberculosis. In this paper we investigated the protective capacity of the 19,000 MW and 38,000 MW glyco-lipoproteins of M. tuberculosis expressed by recombinant vaccinia viruses in a mouse Mycobacterium tuberculosis infection model. Both proteins were expressed at high levels by recombinant vaccinia-infected cells. In addition, two inoculations of C57B1/6 mice with either recombinant vaccinia virus significantly reduced the bacterial counts in the lungs of M. tuberculosis H37Rv-infected mice, when compared with the group infected with control virus. This is the first report of protection against tuberculous infection using recombinant vaccinia viruses with results that suggest that secreted glyco-lipoproteins in conjunction with the vaccinia vector represent suitable candidates for further vaccine-related studies.

Full text

PDF
6

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An L. L., Pamer E., Whitton J. L. A recombinant minigene vaccine containing a nonameric cytotoxic-T-lymphocyte epitope confers limited protection against Listeria monocytogenes infection. Infect Immun. 1996 May;64(5):1685–1693. doi: 10.1128/iai.64.5.1685-1693.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen A. B., Hansen E. B. Structure and mapping of antigenic domains of protein antigen b, a 38,000-molecular-weight protein of Mycobacterium tuberculosis. Infect Immun. 1989 Aug;57(8):2481–2488. doi: 10.1128/iai.57.8.2481-2488.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashbridge K. R., Booth R. J., Watson J. D., Lathigra R. B. Nucleotide sequence of the 19 kDa antigen gene from Mycobacterium tuberculosis. Nucleic Acids Res. 1989 Feb 11;17(3):1249–1249. doi: 10.1093/nar/17.3.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baumgart K. W., McKenzie K. R., Radford A. J., Ramshaw I., Britton W. J. Immunogenicity and protection studies with recombinant mycobacteria and vaccinia vectors coexpressing the 18-kilodalton protein of Mycobacterium leprae. Infect Immun. 1996 Jun;64(6):2274–2281. doi: 10.1128/iai.64.6.2274-2281.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borysiewicz L. K., Fiander A., Nimako M., Man S., Wilkinson G. W., Westmoreland D., Evans A. S., Adams M., Stacey S. N., Boursnell M. E. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet. 1996 Jun 1;347(9014):1523–1527. doi: 10.1016/s0140-6736(96)90674-1. [DOI] [PubMed] [Google Scholar]
  6. Bothamley G. H., Festenstein F., Newland A. Protective role for CD8 cells in tuberculosis. Lancet. 1992 Feb 1;339(8788):315–316. doi: 10.1016/0140-6736(92)91397-q. [DOI] [PubMed] [Google Scholar]
  7. Connors M., Kulkarni A. B., Collins P. L., Firestone C. Y., Holmes K. L., Morse H. C., 3rd, Murphy B. R. Resistance to respiratory syncytial virus (RSV) challenge induced by infection with a vaccinia virus recombinant expressing the RSV M2 protein (Vac-M2) is mediated by CD8+ T cells, while that induced by Vac-F or Vac-G recombinants is mediated by antibodies. J Virol. 1992 Feb;66(2):1277–1281. doi: 10.1128/jvi.66.2.1277-1281.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Libero G., Flesch I., Kaufmann S. H. Mycobacteria-reactive Lyt-2+ T cell lines. Eur J Immunol. 1988 Jan;18(1):59–66. doi: 10.1002/eji.1830180110. [DOI] [PubMed] [Google Scholar]
  9. Espitia C., Mancilla R. Identification, isolation and partial characterization of Mycobacterium tuberculosis glycoprotein antigens. Clin Exp Immunol. 1989 Sep;77(3):378–383. [PMC free article] [PubMed] [Google Scholar]
  10. Fine P. E., Rodrigues L. C. Modern vaccines. Mycobacterial diseases. Lancet. 1990 Apr 28;335(8696):1016–1020. doi: 10.1016/0140-6736(90)91074-k. [DOI] [PubMed] [Google Scholar]
  11. Flynn J. L., Goldstein M. M., Triebold K. J., Koller B., Bloom B. R. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12013–12017. doi: 10.1073/pnas.89.24.12013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garbe T., Harris D., Vordermeier M., Lathigra R., Ivanyi J., Young D. Expression of the Mycobacterium tuberculosis 19-kilodalton antigen in Mycobacterium smegmatis: immunological analysis and evidence of glycosylation. Infect Immun. 1993 Jan;61(1):260–267. doi: 10.1128/iai.61.1.260-267.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harris D. P., Vordermeier H. M., Brett S. J., Pasvol G., Moreno C., Ivanyi J. Epitope specificity and isoforms of the mycobacterial 19-kilodalton antigen. Infect Immun. 1994 Jul;62(7):2963–2972. doi: 10.1128/iai.62.7.2963-2972.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harris D. P., Vordermeier H. M., Roman E., Lathigra R., Brett S. J., Moreno C., Ivanyi J. Murine T cell-stimulatory peptides from the 19-kDa antigen of Mycobacterium tuberculosis. Epitope-restricted homology with the 28-kDa protein of Mycobacterium leprae. J Immunol. 1991 Oct 15;147(8):2706–2712. [PubMed] [Google Scholar]
  15. Lathigra R., Zhang Y., Hill M., Garcia M. J., Jackett P. S., Ivanyi J. Lack of production of the 19-kDa glycolipoprotein in certain strains of Mycobacterium tuberculosis. Res Microbiol. 1996 May;147(4):237–249. doi: 10.1016/0923-2508(96)81384-2. [DOI] [PubMed] [Google Scholar]
  16. Lyons J., Sinos C., Destree A., Caiazzo T., Havican K., McKenzie S., Panicali D., Mahr A. Expression of Mycobacterium tuberculosis and Mycobacterium leprae proteins by vaccinia virus. Infect Immun. 1990 Dec;58(12):4089–4098. doi: 10.1128/iai.58.12.4089-4098.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Müller I., Cobbold S. P., Waldmann H., Kaufmann S. H. Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect Immun. 1987 Sep;55(9):2037–2041. doi: 10.1128/iai.55.9.2037-2041.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pastoret P. P., Brochier B. The development and use of a vaccinia-rabies recombinant oral vaccine for the control of wildlife rabies; a link between Jenner and Pasteur. Epidemiol Infect. 1996 Jun;116(3):235–240. doi: 10.1017/s0950268800052535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Perales M. A., Schwartz D. H., Fabry J. A., Lieberman J. A vaccinia-gp160-based vaccine but not a gp160 protein vaccine elicits anti-gp160 cytotoxic T lymphocytes in some HIV-1 seronegative vaccinees. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Sep 1;10(1):27–35. [PubMed] [Google Scholar]
  20. Shirai M., Akatsuka T., Pendleton C. D., Houghten R., Wychowski C., Mihalik K., Feinstone S., Berzofsky J. A. Induction of cytotoxic T cells to a cross-reactive epitope in the hepatitis C virus nonstructural RNA polymerase-like protein. J Virol. 1992 Jul;66(7):4098–4106. doi: 10.1128/jvi.66.7.4098-4106.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Singh M., Andersen A. B., McCarthy J. E., Rohde M., Schütte H., Sanders E., Timmis K. N. The Mycobacterium tuberculosis 38-kDa antigen: overproduction in Escherichia coli, purification and characterization. Gene. 1992 Aug 1;117(1):53–60. doi: 10.1016/0378-1119(92)90489-c. [DOI] [PubMed] [Google Scholar]
  22. Skipper J., Stauss H. J. Identification of two cytotoxic T lymphocyte-recognized epitopes in the Ras protein. J Exp Med. 1993 May 1;177(5):1493–1498. doi: 10.1084/jem.177.5.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tascon R. E., Colston M. J., Ragno S., Stavropoulos E., Gregory D., Lowrie D. B. Vaccination against tuberculosis by DNA injection. Nat Med. 1996 Aug;2(8):888–892. doi: 10.1038/nm0896-888. [DOI] [PubMed] [Google Scholar]
  24. Turner J., Dockrell H. M. Stimulation of human peripheral blood mononuclear cells with live Mycobacterium bovis BCG activates cytolytic CD8+ T cells in vitro. Immunology. 1996 Mar;87(3):339–342. doi: 10.1046/j.1365-2567.1996.512590.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Young D., Kent L., Rees A., Lamb J., Ivanyi J. Immunological activity of a 38-kilodalton protein purified from Mycobacterium tuberculosis. Infect Immun. 1986 Oct;54(1):177–183. doi: 10.1128/iai.54.1.177-183.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhu X., Tommasino M., Vousden K., Sadovnikava E., Rappuoli R., Crawford L., Kast M., Melief C. J., Beverley P. C., Stauss H. J. Both immunization with protein and recombinant vaccinia virus can stimulate CTL specific for the E7 protein of human papilloma virus 16 in H-2d mice. Scand J Immunol. 1995 Nov;42(5):557–563. doi: 10.1111/j.1365-3083.1995.tb03696.x. [DOI] [PubMed] [Google Scholar]
  27. Zhu X., Venkataprasad N., Thangaraj H. S., Hill M., Singh M., Ivanyi J., Vordermeier H. M. Functions and specificity of T cells following nucleic acid vaccination of mice against Mycobacterium tuberculosis infection. J Immunol. 1997 Jun 15;158(12):5921–5926. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES