Abstract
The swine is a useful model for immunobiological studies as it has a highly heterogeneous lymphocyte pool, containing several subsets not easily accessible in humans and rodents. In particular, the CD8-positive (CD8+) cells contain a variety of lymphocyte subsets, such as alpha beta-T cells, gamma delta-T cells, CD4 CD8 double-positive (DP) cells and natural killer (NK) cells. In order to define these subsets further, we have selected four monoclonal antibodies (mAb) with differential reactivity on CD8+ cells. Thus, mAb CD8.1 (PPT20) bound to CD8hi and CD8lo subpopulations in a similar way to the conventional anti-CD8. The mAb CD8.2 (PPT21), though binding to all of the CD8+ cells, reacted preferably with CD8hi. Two other mAb, CD8.3 (PPT22) and CD8.4 (PPT23), were specific for CD8hi alpha beta-T-cell subpopulation. These results, complemented by immunoprecipitation, co-modulation and enzyme-linked immunosorbent assay experiments, suggest that CD8.1 and CD8.2 react putatively with the CD8 alpha-chain and CD8.3 and CD8.4 with the CD8 beta-chain. Tissue distribution studies revealed that CD8+ thymocytes and peripheral CD8hi alpha beta-T cells expressed both putative CD8 alpha- and beta-chains while peripheral CD4+ CD8+ alpha beta-T cells, CD8lo gamma delta-T cells and NK cells expressed only putative CD8 alpha-chain. Functional studies indicated that the CD8hi alpha beta-T and CD8lo gamma delta-T cells were effector cells in the CD3-redirected cytotoxicity.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Binns R. M. The Null/gamma delta TCR+ T cell family in the pig. Vet Immunol Immunopathol. 1994 Oct;43(1-3):69–77. doi: 10.1016/0165-2427(94)90122-8. [DOI] [PubMed] [Google Scholar]
- Casabó L. G., Mamalaki C., Kioussis D., Zamoyska R. T cell activation results in physical modification of the mouse CD8 beta chain. J Immunol. 1994 Jan 15;152(2):397–404. [PubMed] [Google Scholar]
- Ceredig R., Medveczky J., Skulimowski A. Mouse fetal thymus lobes cultured in IL-2 generate CD3+, TCR-gamma delta-expressing CD4-/CD8+ and CD4-/CD8- cells. J Immunol. 1989 May 15;142(10):3353–3360. [PubMed] [Google Scholar]
- Connolly J. M., Hansen T. H., Ingold A. L., Potter T. A. Recognition by CD8 on cytotoxic T lymphocytes is ablated by several substitutions in the class I alpha 3 domain: CD8 and the T-cell receptor recognize the same class I molecule. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2137–2141. doi: 10.1073/pnas.87.6.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cron R. Q., Gajewski T. F., Sharrow S. O., Fitch F. W., Matis L. A., Bluestone J. A. Phenotypic and functional analysis of murine CD3+,CD4-,CD8- TCR-gamma delta-expressing peripheral T cells. J Immunol. 1989 Jun 1;142(11):3754–3762. [PubMed] [Google Scholar]
- Crooks M. E., Littman D. R. Disruption of T lymphocyte positive and negative selection in mice lacking the CD8 beta chain. Immunity. 1994 Jul;1(4):277–285. doi: 10.1016/1074-7613(94)90079-5. [DOI] [PubMed] [Google Scholar]
- Dembić Z., Haas W., Zamoyska R., Parnes J., Steinmetz M., von Boehmer H. Transfection of the CD8 gene enhances T-cell recognition. Nature. 1987 Apr 2;326(6112):510–511. doi: 10.1038/326510a0. [DOI] [PubMed] [Google Scholar]
- Fung-Leung W. P., Kündig T. M., Ngo K., Panakos J., De Sousa-Hitzler J., Wang E., Ohashi P. S., Mak T. W., Lau C. Y. Reduced thymic maturation but normal effector function of CD8+ T cells in CD8 beta gene-targeted mice. J Exp Med. 1994 Sep 1;180(3):959–967. doi: 10.1084/jem.180.3.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabert J., Langlet C., Zamoyska R., Parnes J. R., Schmitt-Verhulst A. M., Malissen B. Reconstitution of MHC class I specificity by transfer of the T cell receptor and Lyt-2 genes. Cell. 1987 Aug 14;50(4):545–554. doi: 10.1016/0092-8674(87)90027-4. [DOI] [PubMed] [Google Scholar]
- Guy-Grand D., Cerf-Bensussan N., Malissen B., Malassis-Seris M., Briottet C., Vassalli P. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J Exp Med. 1991 Feb 1;173(2):471–481. doi: 10.1084/jem.173.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hori T., Paliard X., de Waal Malefijt R., Ranes M., Spits H. Comparative analysis of CD8 expressed on mature CD4+ CD8+ T cell clones cultured with IL-4 and that on CD8+ T cell clones: implication for functional significance of CD8 beta. Int Immunol. 1991 Jul;3(7):737–741. doi: 10.1093/intimm/3.7.737. [DOI] [PubMed] [Google Scholar]
- Irie H. Y., Ravichandran K. S., Burakoff S. J. CD8 beta chain influences CD8 alpha chain-associated Lck kinase activity. J Exp Med. 1995 Apr 1;181(4):1267–1273. doi: 10.1084/jem.181.4.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonjić S., Koszinowski U. H. Monoclonal antibodies reactive with swine lymphocytes. I. Antibodies to membrane structures that define the cytolytic T lymphocyte subset in the swine. J Immunol. 1984 Aug;133(2):647–652. [PubMed] [Google Scholar]
- Karaki S., Tanabe M., Nakauchi H., Takiguchi M. Beta-chain broadens range of CD8 recognition for MHC class I molecule. J Immunol. 1992 Sep 1;149(5):1613–1618. [PubMed] [Google Scholar]
- Kavathas P., Sukhatme V. P., Herzenberg L. A., Parnes J. R. Isolation of the gene encoding the human T-lymphocyte differentiation antigen Leu-2 (T8) by gene transfer and cDNA subtraction. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7688–7692. doi: 10.1073/pnas.81.24.7688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald H. R., Schreyer M., Howe R. C., Bron C. Selective expression of CD8 alpha (Ly-2) subunit on activated thymic gamma/delta cells. Eur J Immunol. 1990 Apr;20(4):927–930. doi: 10.1002/eji.1830200431. [DOI] [PubMed] [Google Scholar]
- Moebius U., Kober G., Griscelli A. L., Hercend T., Meuer S. C. Expression of different CD8 isoforms on distinct human lymphocyte subpopulations. Eur J Immunol. 1991 Aug;21(8):1793–1800. doi: 10.1002/eji.1830210803. [DOI] [PubMed] [Google Scholar]
- Nakayama K., Nakayama K., Negishi I., Kuida K., Louie M. C., Kanagawa O., Nakauchi H., Loh D. Y. Requirement for CD8 beta chain in positive selection of CD8-lineage T cells. Science. 1994 Feb 25;263(5150):1131–1133. doi: 10.1126/science.8108731. [DOI] [PubMed] [Google Scholar]
- Norment A. M., Littman D. R. A second subunit of CD8 is expressed in human T cells. EMBO J. 1988 Nov;7(11):3433–3439. doi: 10.1002/j.1460-2075.1988.tb03217.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pescovitz M. D., Sakopoulos A. G., Gaddy J. A., Husmann R. J., Zuckermann F. A. Porcine peripheral blood CD4+/CD8+ dual expressing T-cells. Vet Immunol Immunopathol. 1994 Oct;43(1-3):53–62. doi: 10.1016/0165-2427(94)90120-1. [DOI] [PubMed] [Google Scholar]
- Saalmüller A., Hirt W., Reddehase M. J. Phenotypic discrimination between thymic and extrathymic CD4-CD8- and CD4+CD8+ porcine T lymphocytes. Eur J Immunol. 1989 Nov;19(11):2011–2016. doi: 10.1002/eji.1830191107. [DOI] [PubMed] [Google Scholar]
- Shiue L., Gorman S. D., Parnes J. R. A second chain of human CD8 is expressed on peripheral blood lymphocytes. J Exp Med. 1988 Dec 1;168(6):1993–2005. doi: 10.1084/jem.168.6.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torres-Nagel N., Kraus E., Brown M. H., Tiefenthaler G., Mitnacht R., Williams A. F., Hünig T. Differential thymus dependence of rat CD8 isoform expression. Eur J Immunol. 1992 Nov;22(11):2841–2848. doi: 10.1002/eji.1830221113. [DOI] [PubMed] [Google Scholar]
- Turner J. M., Brodsky M. H., Irving B. A., Levin S. D., Perlmutter R. M., Littman D. R. Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell. 1990 Mar 9;60(5):755–765. doi: 10.1016/0092-8674(90)90090-2. [DOI] [PubMed] [Google Scholar]
- Wheeler C. J., von Hoegen P., Parnes J. R. An immunological role for the CD8 beta-chain. Nature. 1992 May 21;357(6375):247–249. doi: 10.1038/357247a0. [DOI] [PubMed] [Google Scholar]
- Yang H., Oura C. A., Kirkham P. A., Parkhouse R. M. Preparation of monoclonal anti-porcine CD3 antibodies and preliminary characterization of porcine T lymphocytes. Immunology. 1996 Aug;88(4):577–585. doi: 10.1046/j.1365-2567.1996.d01-682.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang H., Parkhouse R. M. Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology. 1996 Sep;89(1):76–83. doi: 10.1046/j.1365-2567.1996.d01-705.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zamoyska R., Derham P., Gorman S. D., von Hoegen P., Bolen J. B., Veillette A., Parnes J. R. Inability of CD8 alpha' polypeptides to associate with p56lck correlates with impaired function in vitro and lack of expression in vivo. Nature. 1989 Nov 16;342(6247):278–281. doi: 10.1038/342278a0. [DOI] [PubMed] [Google Scholar]
- Zuckermann F. A., Husmann R. J. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology. 1996 Mar;87(3):500–512. [PMC free article] [PubMed] [Google Scholar]