Abstract
Native dextran B512 is a T-cell-independent (TI) antigen. By conjugating low molecular weight (MW) dextran to protein, a T-cell-dependent (TD) response against dextran can be obtained. We have previously reported the effects of native dextran and two different protein-dextran conjugates on the immune system. While one type of conjugate induced an optimal TD response, the other conjugate ('suboptimal') evoked a response more similar to that induced by native dextran, i.e. with little immunoglobulin class switch and with a secondary response of similar magnitude to the primary response. In order to investigate if it was possible to augment the anti-dextran response we examined the effects of cholera toxin (CT) in our dextran model system. CT is a potent mucosal, as well as systemic, adjuvant with effects on T cells, B cells and antigen-presenting cells. We show that CT is a very efficient adjuvant for both the TD and TI forms of dextran. A major increase in IgM and IgG anti-dextran antibody production was detected after administration of CT together with the conjugates compared with a conventional alum adjuvant. The effect was most pronounced for the suboptimal TD conjugate. CT was also able partially to abrogate the unresponsiveness to dextran in the TI type 2 (TI-2) non-responder strain CBA/N. CT was also found to be a very potent adjuvant for native dextran, secondary IgM levels were enhanced eightfold by the co-administration of CT. Furthermore CTB-Dx, which is a conjugate of the non-toxic part of CT and low MW, non-immunogenic dextran, elicited an anti-dextran response in nude mice. Collectively, our data show that it is possible to improve the immunogenicity of both TD and TI forms of a carbohydrate by co-administration of CT. This is indicative of two components of the adjuvant effect, one could enhance antigen presentation and costimulation of T cells and the other could have a direct stimulatory effect on B cells.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergquist C., Lagergård T., Lindblad M., Holmgren J. Local and systemic antibody responses to dextran-cholera toxin B subunit conjugates. Infect Immun. 1995 May;63(5):2021–2025. doi: 10.1128/iai.63.5.2021-2025.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bromander A., Holmgren J., Lycke N. Cholera toxin stimulates IL-1 production and enhances antigen presentation by macrophages in vitro. J Immunol. 1991 May 1;146(9):2908–2914. [PubMed] [Google Scholar]
- Cisar J., Kabat E. A., Dorner M. M., Liao J. Binding properties of immunoglobulin combining sites specific for terminal or nonterminal antigenic determinants in dextran. J Exp Med. 1975 Aug 1;142(2):435–459. doi: 10.1084/jem.142.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coutinho A., Möller G., Richter W. Molecular basis of B-cell activation. I. Mitogenicity of native and substituted dextrans. Scand J Immunol. 1974;3(3):321–328. doi: 10.1111/j.1365-3083.1974.tb01263.x. [DOI] [PubMed] [Google Scholar]
- Cowan M. J., Ammann A. J., Wara D. W., Howie V. M., Schultz L., Doyle N., Kaplan M. Pneumococcal polysaccharide immunization in infants and children. Pediatrics. 1978 Nov;62(5):721–727. [PubMed] [Google Scholar]
- Deck B., Elofsson M., Kihlberg J., Unanue E. R. Specificity of glycopeptide-specific T cells. J Immunol. 1995 Aug 1;155(3):1074–1078. [PubMed] [Google Scholar]
- Elson C. O., Ealding W. Ir gene control of the murine secretory IgA response to cholera toxin. Eur J Immunol. 1987 Mar;17(3):425–428. doi: 10.1002/eji.1830170320. [DOI] [PubMed] [Google Scholar]
- Fernandez C., Möller G. A primary immune response to dextran B512 is followed by a period of antigen-specific immunosuppression caused by autoanti-idiotypic antibodies. Scand J Immunol. 1980;11(1):53–62. doi: 10.1111/j.1365-3083.1980.tb00208.x. [DOI] [PubMed] [Google Scholar]
- Fernandez C., Möller G. Immune response against two epitopes on the same thymus-independent polysaccharide carrier. 1. Role of epitope density in carrier-dependent immunity and tolerance. Immunology. 1977 Jul;33(1):59–68. [PMC free article] [PubMed] [Google Scholar]
- Fernandez C., Möller G. Immunological unresponsiveness to native dextran B512 in young animals of dextran high responder strains is due to lack of Ig receptors expression. Evidence for a nonrandom expression of V-genes. J Exp Med. 1978 Mar 1;147(3):645–655. doi: 10.1084/jem.147.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandez C., Möller G. Immunological unresponsiveness to thymus-independent antigens: two fundamentally different genetic mechanisms of B-cell unresponsiveness to dextran. J Exp Med. 1977 Dec 1;146(6):1663–1677. doi: 10.1084/jem.146.6.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandez C., Möller G. Serum antibody and cellular immune response in mice to dextran B512. Cell Immunol. 1990 Nov;131(1):41–51. doi: 10.1016/0008-8749(90)90233-h. [DOI] [PubMed] [Google Scholar]
- Fernandez C., Möller G. The influence of T cells on the immunoglobulin repertoire and the affinity maturation of the immune response against dextran B512 in C57BL/6 mice. Scand J Immunol. 1991 Mar;33(3):307–317. doi: 10.1111/j.1365-3083.1991.tb01776.x. [DOI] [PubMed] [Google Scholar]
- Fernandez C., Sverremark E. Immune responses to bacterial polysaccharides: terminal epitopes are more immunogenic than internal structures. Cell Immunol. 1994 Jan;153(1):67–78. doi: 10.1006/cimm.1994.1006. [DOI] [PubMed] [Google Scholar]
- Harding C. V., Kihlberg J., Elofsson M., Magnusson G., Unanue E. R. Glycopeptides bind MHC molecules and elicit specific T cell responses. J Immunol. 1993 Sep 1;151(5):2419–2425. [PubMed] [Google Scholar]
- Haurum J. S., Arsequell G., Lellouch A. C., Wong S. Y., Dwek R. A., McMichael A. J., Elliott T. Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes. J Exp Med. 1994 Aug 1;180(2):739–744. doi: 10.1084/jem.180.2.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hörnquist E., Lycke N. Cholera toxin adjuvant greatly promotes antigen priming of T cells. Eur J Immunol. 1993 Sep;23(9):2136–2143. doi: 10.1002/eji.1830230914. [DOI] [PubMed] [Google Scholar]
- Ishioka G. Y., Lamont A. G., Thomson D., Bulbow N., Gaeta F. C., Sette A., Grey H. M. MHC interaction and T cell recognition of carbohydrates and glycopeptides. J Immunol. 1992 Apr 15;148(8):2446–2451. [PubMed] [Google Scholar]
- Lycke N. Y. Cholera toxin promotes B cell isotype switching by two different mechanisms. cAMP induction augments germ-line Ig H-chain RNA transcripts whereas membrane ganglioside GM1-receptor binding enhances later events in differentiation. J Immunol. 1993 Jun 1;150(11):4810–4821. [PubMed] [Google Scholar]
- Lycke N., Holmgren J. Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology. 1986 Oct;59(2):301–308. [PMC free article] [PubMed] [Google Scholar]
- Lycke N., Severinson E., Strober W. Cholera toxin acts synergistically with IL-4 to promote IgG1 switch differentiation. J Immunol. 1990 Nov 15;145(10):3316–3324. [PubMed] [Google Scholar]
- Lycke N., Strober W. Cholera toxin promotes B cell isotype differentiation. J Immunol. 1989 Jun 1;142(11):3781–3787. [PubMed] [Google Scholar]
- Michaëlsson E., Broddefalk J., Engström A., Kihlberg J., Holmdahl R. Antigen processing and presentation of a naturally glycosylated protein elicits major histocompatibility complex class II-restricted, carbohydrate-specific T cells. Eur J Immunol. 1996 Aug;26(8):1906–1910. doi: 10.1002/eji.1830260835. [DOI] [PubMed] [Google Scholar]
- Mond J. J., Lees A., Snapper C. M. T cell-independent antigens type 2. Annu Rev Immunol. 1995;13:655–692. doi: 10.1146/annurev.iy.13.040195.003255. [DOI] [PubMed] [Google Scholar]
- Mouritsen S., Meldal M., Christiansen-Brams I., Elsner H., Werdelin O. Attachment of oligosaccharides to peptide antigen profoundly affects binding to major histocompatibility complex class II molecules and peptide immunogenicity. Eur J Immunol. 1994 May;24(5):1066–1072. doi: 10.1002/eji.1830240509. [DOI] [PubMed] [Google Scholar]
- Newman B. A., Kabat E. A. An immunochemical study of the combining site specificities of C57BL/6J monoclonal antibodies to alpha (1----6)-linked dextran B512. J Immunol. 1985 Aug;135(2):1220–1231. [PubMed] [Google Scholar]
- Nieto A., Gaya A., Jansa M., Moreno C., Vives J. Direct measurement of antibody affinity distribution by hapten-inhibition enzyme immunoassay. Mol Immunol. 1984 Jun;21(6):537–543. doi: 10.1016/0161-5890(84)90070-1. [DOI] [PubMed] [Google Scholar]
- Rodkey L. S., Schalch W., Braun D. G. Lytic and non-lytic activity associated with clonally distinct IgG antibodies. Mol Immunol. 1979 Jul;16(7):527–530. doi: 10.1016/0161-5890(79)90080-4. [DOI] [PubMed] [Google Scholar]
- Seppälä I., Mäkelä O. Antigenicity of dextran-protein conjugates in mice. Effect of molecular weight of the carbohydrate and comparison of two modes of coupling. J Immunol. 1989 Aug 15;143(4):1259–1264. [PubMed] [Google Scholar]
- Sieling P. A., Chatterjee D., Porcelli S. A., Prigozy T. I., Mazzaccaro R. J., Soriano T., Bloom B. R., Brenner M. B., Kronenberg M., Brennan P. J. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science. 1995 Jul 14;269(5221):227–230. doi: 10.1126/science.7542404. [DOI] [PubMed] [Google Scholar]
- Snapper C. M., Yamaguchi H., Moorman M. A., Sneed R., Smoot D., Mond J. J. Natural killer cells induce activated murine B cells to secrete Ig. J Immunol. 1993 Nov 15;151(10):5251–5260. [PubMed] [Google Scholar]
- Timens W., Boes A., Rozeboom-Uiterwijk T., Poppema S. Immaturity of the human splenic marginal zone in infancy. Possible contribution to the deficient infant immune response. J Immunol. 1989 Nov 15;143(10):3200–3206. [PubMed] [Google Scholar]
- Vajdy M., Lycke N. Stimulation of antigen-specific T- and B-cell memory in local as well as systemic lymphoid tissues following oral immunization with cholera toxin adjuvant. Immunology. 1993 Oct;80(2):197–203. [PMC free article] [PubMed] [Google Scholar]
- Wallick S. C., Kabat E. A., Morrison S. L. The effect of isotype and the J kappa region on antigen binding and idiotype expression by antibodies binding alpha (1----6) dextran. J Immunol. 1989 Feb 15;142(4):1235–1244. [PubMed] [Google Scholar]
- Watts T. H., Alaverdi N., Wade W. F., Linsley P. S. Induction of costimulatory molecule B7 in M12 B lymphomas by cAMP or MHC-restricted T cell interaction. J Immunol. 1993 Mar 15;150(6):2192–2202. [PubMed] [Google Scholar]
