Skip to main content
Immunology logoLink to Immunology
. 1997 Sep;92(1):153–159. doi: 10.1046/j.1365-2567.1997.00314.x

Immunogenicity of bacterial carbohydrates: cholera toxin modulates the immune response against dextran B512.

E Sverremark 1, C Fernandez 1
PMCID: PMC1363995  PMID: 9370938

Abstract

Native dextran B512 is a T-cell-independent (TI) antigen. By conjugating low molecular weight (MW) dextran to protein, a T-cell-dependent (TD) response against dextran can be obtained. We have previously reported the effects of native dextran and two different protein-dextran conjugates on the immune system. While one type of conjugate induced an optimal TD response, the other conjugate ('suboptimal') evoked a response more similar to that induced by native dextran, i.e. with little immunoglobulin class switch and with a secondary response of similar magnitude to the primary response. In order to investigate if it was possible to augment the anti-dextran response we examined the effects of cholera toxin (CT) in our dextran model system. CT is a potent mucosal, as well as systemic, adjuvant with effects on T cells, B cells and antigen-presenting cells. We show that CT is a very efficient adjuvant for both the TD and TI forms of dextran. A major increase in IgM and IgG anti-dextran antibody production was detected after administration of CT together with the conjugates compared with a conventional alum adjuvant. The effect was most pronounced for the suboptimal TD conjugate. CT was also able partially to abrogate the unresponsiveness to dextran in the TI type 2 (TI-2) non-responder strain CBA/N. CT was also found to be a very potent adjuvant for native dextran, secondary IgM levels were enhanced eightfold by the co-administration of CT. Furthermore CTB-Dx, which is a conjugate of the non-toxic part of CT and low MW, non-immunogenic dextran, elicited an anti-dextran response in nude mice. Collectively, our data show that it is possible to improve the immunogenicity of both TD and TI forms of a carbohydrate by co-administration of CT. This is indicative of two components of the adjuvant effect, one could enhance antigen presentation and costimulation of T cells and the other could have a direct stimulatory effect on B cells.

Full text

PDF
153

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergquist C., Lagergård T., Lindblad M., Holmgren J. Local and systemic antibody responses to dextran-cholera toxin B subunit conjugates. Infect Immun. 1995 May;63(5):2021–2025. doi: 10.1128/iai.63.5.2021-2025.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bromander A., Holmgren J., Lycke N. Cholera toxin stimulates IL-1 production and enhances antigen presentation by macrophages in vitro. J Immunol. 1991 May 1;146(9):2908–2914. [PubMed] [Google Scholar]
  3. Cisar J., Kabat E. A., Dorner M. M., Liao J. Binding properties of immunoglobulin combining sites specific for terminal or nonterminal antigenic determinants in dextran. J Exp Med. 1975 Aug 1;142(2):435–459. doi: 10.1084/jem.142.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coutinho A., Möller G., Richter W. Molecular basis of B-cell activation. I. Mitogenicity of native and substituted dextrans. Scand J Immunol. 1974;3(3):321–328. doi: 10.1111/j.1365-3083.1974.tb01263.x. [DOI] [PubMed] [Google Scholar]
  5. Cowan M. J., Ammann A. J., Wara D. W., Howie V. M., Schultz L., Doyle N., Kaplan M. Pneumococcal polysaccharide immunization in infants and children. Pediatrics. 1978 Nov;62(5):721–727. [PubMed] [Google Scholar]
  6. Deck B., Elofsson M., Kihlberg J., Unanue E. R. Specificity of glycopeptide-specific T cells. J Immunol. 1995 Aug 1;155(3):1074–1078. [PubMed] [Google Scholar]
  7. Elson C. O., Ealding W. Ir gene control of the murine secretory IgA response to cholera toxin. Eur J Immunol. 1987 Mar;17(3):425–428. doi: 10.1002/eji.1830170320. [DOI] [PubMed] [Google Scholar]
  8. Fernandez C., Möller G. A primary immune response to dextran B512 is followed by a period of antigen-specific immunosuppression caused by autoanti-idiotypic antibodies. Scand J Immunol. 1980;11(1):53–62. doi: 10.1111/j.1365-3083.1980.tb00208.x. [DOI] [PubMed] [Google Scholar]
  9. Fernandez C., Möller G. Immune response against two epitopes on the same thymus-independent polysaccharide carrier. 1. Role of epitope density in carrier-dependent immunity and tolerance. Immunology. 1977 Jul;33(1):59–68. [PMC free article] [PubMed] [Google Scholar]
  10. Fernandez C., Möller G. Immunological unresponsiveness to native dextran B512 in young animals of dextran high responder strains is due to lack of Ig receptors expression. Evidence for a nonrandom expression of V-genes. J Exp Med. 1978 Mar 1;147(3):645–655. doi: 10.1084/jem.147.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fernandez C., Möller G. Immunological unresponsiveness to thymus-independent antigens: two fundamentally different genetic mechanisms of B-cell unresponsiveness to dextran. J Exp Med. 1977 Dec 1;146(6):1663–1677. doi: 10.1084/jem.146.6.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fernandez C., Möller G. Serum antibody and cellular immune response in mice to dextran B512. Cell Immunol. 1990 Nov;131(1):41–51. doi: 10.1016/0008-8749(90)90233-h. [DOI] [PubMed] [Google Scholar]
  13. Fernandez C., Möller G. The influence of T cells on the immunoglobulin repertoire and the affinity maturation of the immune response against dextran B512 in C57BL/6 mice. Scand J Immunol. 1991 Mar;33(3):307–317. doi: 10.1111/j.1365-3083.1991.tb01776.x. [DOI] [PubMed] [Google Scholar]
  14. Fernandez C., Sverremark E. Immune responses to bacterial polysaccharides: terminal epitopes are more immunogenic than internal structures. Cell Immunol. 1994 Jan;153(1):67–78. doi: 10.1006/cimm.1994.1006. [DOI] [PubMed] [Google Scholar]
  15. Harding C. V., Kihlberg J., Elofsson M., Magnusson G., Unanue E. R. Glycopeptides bind MHC molecules and elicit specific T cell responses. J Immunol. 1993 Sep 1;151(5):2419–2425. [PubMed] [Google Scholar]
  16. Haurum J. S., Arsequell G., Lellouch A. C., Wong S. Y., Dwek R. A., McMichael A. J., Elliott T. Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes. J Exp Med. 1994 Aug 1;180(2):739–744. doi: 10.1084/jem.180.2.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hörnquist E., Lycke N. Cholera toxin adjuvant greatly promotes antigen priming of T cells. Eur J Immunol. 1993 Sep;23(9):2136–2143. doi: 10.1002/eji.1830230914. [DOI] [PubMed] [Google Scholar]
  18. Ishioka G. Y., Lamont A. G., Thomson D., Bulbow N., Gaeta F. C., Sette A., Grey H. M. MHC interaction and T cell recognition of carbohydrates and glycopeptides. J Immunol. 1992 Apr 15;148(8):2446–2451. [PubMed] [Google Scholar]
  19. Lycke N. Y. Cholera toxin promotes B cell isotype switching by two different mechanisms. cAMP induction augments germ-line Ig H-chain RNA transcripts whereas membrane ganglioside GM1-receptor binding enhances later events in differentiation. J Immunol. 1993 Jun 1;150(11):4810–4821. [PubMed] [Google Scholar]
  20. Lycke N., Holmgren J. Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology. 1986 Oct;59(2):301–308. [PMC free article] [PubMed] [Google Scholar]
  21. Lycke N., Severinson E., Strober W. Cholera toxin acts synergistically with IL-4 to promote IgG1 switch differentiation. J Immunol. 1990 Nov 15;145(10):3316–3324. [PubMed] [Google Scholar]
  22. Lycke N., Strober W. Cholera toxin promotes B cell isotype differentiation. J Immunol. 1989 Jun 1;142(11):3781–3787. [PubMed] [Google Scholar]
  23. Michaëlsson E., Broddefalk J., Engström A., Kihlberg J., Holmdahl R. Antigen processing and presentation of a naturally glycosylated protein elicits major histocompatibility complex class II-restricted, carbohydrate-specific T cells. Eur J Immunol. 1996 Aug;26(8):1906–1910. doi: 10.1002/eji.1830260835. [DOI] [PubMed] [Google Scholar]
  24. Mond J. J., Lees A., Snapper C. M. T cell-independent antigens type 2. Annu Rev Immunol. 1995;13:655–692. doi: 10.1146/annurev.iy.13.040195.003255. [DOI] [PubMed] [Google Scholar]
  25. Mouritsen S., Meldal M., Christiansen-Brams I., Elsner H., Werdelin O. Attachment of oligosaccharides to peptide antigen profoundly affects binding to major histocompatibility complex class II molecules and peptide immunogenicity. Eur J Immunol. 1994 May;24(5):1066–1072. doi: 10.1002/eji.1830240509. [DOI] [PubMed] [Google Scholar]
  26. Newman B. A., Kabat E. A. An immunochemical study of the combining site specificities of C57BL/6J monoclonal antibodies to alpha (1----6)-linked dextran B512. J Immunol. 1985 Aug;135(2):1220–1231. [PubMed] [Google Scholar]
  27. Nieto A., Gaya A., Jansa M., Moreno C., Vives J. Direct measurement of antibody affinity distribution by hapten-inhibition enzyme immunoassay. Mol Immunol. 1984 Jun;21(6):537–543. doi: 10.1016/0161-5890(84)90070-1. [DOI] [PubMed] [Google Scholar]
  28. Rodkey L. S., Schalch W., Braun D. G. Lytic and non-lytic activity associated with clonally distinct IgG antibodies. Mol Immunol. 1979 Jul;16(7):527–530. doi: 10.1016/0161-5890(79)90080-4. [DOI] [PubMed] [Google Scholar]
  29. Seppälä I., Mäkelä O. Antigenicity of dextran-protein conjugates in mice. Effect of molecular weight of the carbohydrate and comparison of two modes of coupling. J Immunol. 1989 Aug 15;143(4):1259–1264. [PubMed] [Google Scholar]
  30. Sieling P. A., Chatterjee D., Porcelli S. A., Prigozy T. I., Mazzaccaro R. J., Soriano T., Bloom B. R., Brenner M. B., Kronenberg M., Brennan P. J. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science. 1995 Jul 14;269(5221):227–230. doi: 10.1126/science.7542404. [DOI] [PubMed] [Google Scholar]
  31. Snapper C. M., Yamaguchi H., Moorman M. A., Sneed R., Smoot D., Mond J. J. Natural killer cells induce activated murine B cells to secrete Ig. J Immunol. 1993 Nov 15;151(10):5251–5260. [PubMed] [Google Scholar]
  32. Timens W., Boes A., Rozeboom-Uiterwijk T., Poppema S. Immaturity of the human splenic marginal zone in infancy. Possible contribution to the deficient infant immune response. J Immunol. 1989 Nov 15;143(10):3200–3206. [PubMed] [Google Scholar]
  33. Vajdy M., Lycke N. Stimulation of antigen-specific T- and B-cell memory in local as well as systemic lymphoid tissues following oral immunization with cholera toxin adjuvant. Immunology. 1993 Oct;80(2):197–203. [PMC free article] [PubMed] [Google Scholar]
  34. Wallick S. C., Kabat E. A., Morrison S. L. The effect of isotype and the J kappa region on antigen binding and idiotype expression by antibodies binding alpha (1----6) dextran. J Immunol. 1989 Feb 15;142(4):1235–1244. [PubMed] [Google Scholar]
  35. Watts T. H., Alaverdi N., Wade W. F., Linsley P. S. Induction of costimulatory molecule B7 in M12 B lymphomas by cAMP or MHC-restricted T cell interaction. J Immunol. 1993 Mar 15;150(6):2192–2202. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES