Skip to main content
Immunology logoLink to Immunology
. 1997 Jul;91(3):391–398. doi: 10.1046/j.1365-2567.1997.00275.x

Functional lipopolysaccharide receptors of low affinity are constitutively expressed on mouse bone marrow cells.

R Girard 1, T Pedron 1, R Chaby 1
PMCID: PMC1364008  PMID: 9301528

Abstract

Although lipopolysaccharide (LPS)-induced overproduction of cytokines, involved in the pathogenesis of septic shock, occupies the spotlight of endotoxin research, another LPS effect, the differentiation of various cell types including haematopoietic bone marrow cells (BMC), which is probably related to its radioprotective activity, deserves equal attention. We have previously established that nanomolar concentrations of LPS trigger in human BMC the expression of CD14 by an induction mechanism independent of CD14 or any other molecule anchored to the cell membrane by a glycosyl phosphatidylinositol glycolipid. We now show that this LPS-induced stimulation is triggered by the binding of a small number of LPS molecules (13,000 molecules/cell) to constitutive LPS receptors of low affinity (Kd = 480 nM). This interaction, which was inhibited by a synthetic LPS antagonist, appeared specific, reversible, saturable, time- and temperature-dependent, but was independent of divalent cations, and was inhibited by serum. Exposure of BMC to LPS did not induce a down-modulation of these receptors, but enhanced their sensitivity to trypsin degradation. Inhibition of LPS binding following different treatments correlated with inhibition of BMC stimulation, thus suggesting that the sparse constitutive receptors of low affinity are efficient signalling receptors for LPS.

Full text

PDF
391

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AINSWORTH E. J., CHASE H. B. Effect of microbial antigens on irradiation mortality in mice. Proc Soc Exp Biol Med. 1959 Nov;102:483–485. doi: 10.3181/00379727-102-25290. [DOI] [PubMed] [Google Scholar]
  2. Bazil V., Strominger J. L. Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J Immunol. 1991 Sep 1;147(5):1567–1574. [PubMed] [Google Scholar]
  3. Chaby R., Pedron T., Girard R. Nontoxic forms of lipopolysaccharides, poorly cleared in vivo, are present in variable amounts in phenol-extracted endotoxins. J Infect Dis. 1993 Jan;167(1):131–140. doi: 10.1093/infdis/167.1.131. [DOI] [PubMed] [Google Scholar]
  4. Chaby R., Pedron T., Stütz P. L., Girard R. Lipopolysaccharide and tumor necrosis factor-alpha induce lipopolysaccharide receptor expression on bone marrow cells by different mechanisms. J Immunol. 1993 Nov 1;151(9):4476–4485. [PubMed] [Google Scholar]
  5. Fahmi H., Chaby R. Selective refractoriness of macrophages to endotoxin-induced production of tumor necrosis factor, elicited by an autocrine mechanism. J Leukoc Biol. 1993 Jan;53(1):45–52. doi: 10.1002/jlb.53.1.45. [DOI] [PubMed] [Google Scholar]
  6. Gegner J. A., Ulevitch R. J., Tobias P. S. Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14. J Biol Chem. 1995 Mar 10;270(10):5320–5325. doi: 10.1074/jbc.270.10.5320. [DOI] [PubMed] [Google Scholar]
  7. Gessani S., Testa U., Varano B., Di Marzio P., Borghi P., Conti L., Barberi T., Tritarelli E., Martucci R., Seripa D. Enhanced production of LPS-induced cytokines during differentiation of human monocytes to macrophages. Role of LPS receptors. J Immunol. 1993 Oct 1;151(7):3758–3766. [PubMed] [Google Scholar]
  8. Girard R., Pedron T., Chaby R. Endotoxin-induced expression of endotoxin binding sites on murine bone marrow cells. J Immunol. 1993 May 15;150(10):4504–4513. [PubMed] [Google Scholar]
  9. Girard R., Pedron T., Kosma P., Chaby R. A synthetic analog of the 3-deoxy-D-manno-2-octulosonic acid disaccharide moiety of rough-type endotoxins does not bind to mouse peritoneal macrophages and human monocytes. Infect Immun. 1993 Sep;61(9):3616–3624. doi: 10.1128/iai.61.9.3616-3624.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glauser M. P., Zanetti G., Baumgartner J. D., Cohen J. Septic shock: pathogenesis. Lancet. 1991 Sep 21;338(8769):732–736. doi: 10.1016/0140-6736(91)91452-z. [DOI] [PubMed] [Google Scholar]
  11. Hampton R. Y., Golenbock D. T., Penman M., Krieger M., Raetz C. R. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature. 1991 Jul 25;352(6333):342–344. doi: 10.1038/352342a0. [DOI] [PubMed] [Google Scholar]
  12. Ingalls R. R., Golenbock D. T. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J Exp Med. 1995 Apr 1;181(4):1473–1479. doi: 10.1084/jem.181.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kitchens R. L., Munford R. S. Enzymatically deacylated lipopolysaccharide (LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. J Biol Chem. 1995 Apr 28;270(17):9904–9910. doi: 10.1074/jbc.270.17.9904. [DOI] [PubMed] [Google Scholar]
  14. Larsen N. E., Sullivan R. Interaction between endotoxin and human monocytes: characteristics of the binding of 3H-labeled lipopolysaccharide and 51Cr-labeled lipid A before and after the induction of endotoxin tolerance. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3491–3495. doi: 10.1073/pnas.81.11.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lynn W. A., Liu Y., Golenbock D. T. Neither CD14 nor serum is absolutely necessary for activation of mononuclear phagocytes by bacterial lipopolysaccharide. Infect Immun. 1993 Oct;61(10):4452–4461. doi: 10.1128/iai.61.10.4452-4461.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Madonna G. S., Vogel S. N. Early endotoxin tolerance is associated with alterations in bone marrow-derived macrophage precursor pools. J Immunol. 1985 Dec;135(6):3763–3771. [PubMed] [Google Scholar]
  17. Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol. 1987 Apr;131(1):123–130. doi: 10.1002/jcp.1041310118. [DOI] [PubMed] [Google Scholar]
  18. Pedron T., Girard R., Turco S. J., Chaby R. Phosphatidylinositol-anchored molecules and inducible lipopolysaccharide binding sites of human and mouse bone marrow cells. J Biol Chem. 1994 Jan 28;269(4):2426–2432. [PubMed] [Google Scholar]
  19. Schmid S. L., Carter L. L. ATP is required for receptor-mediated endocytosis in intact cells. J Cell Biol. 1990 Dec;111(6 Pt 1):2307–2318. doi: 10.1083/jcb.111.6.2307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tahri-Jouti M. A., Chaby R. Specific binding of lipopolysaccharides to mouse macrophages--I. Characteristics of the interaction and inefficiency of the polysaccharide region. Mol Immunol. 1990 Aug;27(8):751–761. doi: 10.1016/0161-5890(90)90084-d. [DOI] [PubMed] [Google Scholar]
  21. Tobias P. S., Soldau K., Kline L., Lee J. D., Kato K., Martin T. P., Ulevitch R. J. Cross-linking of lipopolysaccharide (LPS) to CD14 on THP-1 cells mediated by LPS-binding protein. J Immunol. 1993 Apr 1;150(7):3011–3021. [PubMed] [Google Scholar]
  22. Tsudo M., Kozak R. W., Goldman C. K., Waldmann T. A. Demonstration of a non-Tac peptide that binds interleukin 2: a potential participant in a multichain interleukin 2 receptor complex. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9694–9698. doi: 10.1073/pnas.83.24.9694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weersink A. J., van Kessel K. P., van den Tol M. E., van Strijp J. A., Torensma R., Verhoef J., Elsbach P., Weiss J. Human granulocytes express a 55-kDa lipopolysaccharide-binding protein on the cell surface that is identical to the bactericidal/permeability-increasing protein. J Immunol. 1993 Jan 1;150(1):253–263. [PubMed] [Google Scholar]
  24. Wright S. D. CD14 and innate recognition of bacteria. J Immunol. 1995 Jul 1;155(1):6–8. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES