Abstract
Natural killer (NK) cells are lymphocytes that are capable of destroying tumour cells and virally infected cells (cytolysis) without prior sensitization. When cAMP is artificially elevated in NK cells, it is a potent inhibitor of their cytolytic function. We investigated whether NK-cell cAMP levels are modulated in response to tumour target cells to determine the potential of cAMP as a physiological regulator of NK cytotoxic function. When NK cells are exposed to a range of lysis-sensitive (LS) tumour-target cells there is an increase in intracellular cAMP levels in the NK cells over a 60-min period. The peak increase in cAMP (200-400% above control) occurs at 30 min for all LS targets tested. There is no increase in NK-cell cAMP in response to lysis-resistant (LR) tumour-target cells. The cAMP elevation may be dependent on both LS-target-stimulated adenylyl cyclase (AC) activation and LS-target-stimulated phosphodiesterase (PDE) inhibition. When the NK cells are pretreated with the protein tyrosine kinase (PTK) inhibitor, genistein (30 micrograms/ml), the AC-activation component of the cAMP elevation is abolished. Thus, the AC-activation component appears to require PTK activation. When NK cells are pretreated with the protein kinase C (PKC) inhibitor, chelerythrine chloride (10 microM) the cAMP elevation in response to LS targets was not diminished. This indicates that neither the AC-activation component nor any PDE-inhibition component require PKC activation.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams S. I., Brahmi Z. Target cell directed NK inactivation. Concomitant loss of NK and antibody-dependent cellular cytotoxicity activities. J Immunol. 1988 Mar 15;140(6):2090–2095. [PubMed] [Google Scholar]
- Antoni F. A., Barnard R. J., Shipston M. J., Smith S. M., Simpson J., Paterson J. M. Calcineurin feedback inhibition of agonist-evoked cAMP formation. J Biol Chem. 1995 Nov 24;270(47):28055–28061. doi: 10.1074/jbc.270.47.28055. [DOI] [PubMed] [Google Scholar]
- Bancu A. C., Gherman M., Sulica A., Goto T., Farrar W., Herberman R. B. Regulation of human natural cytotoxicity by IgG. II. Cyclic AMP as a mediator of monomeric IgG-induced inhibition of natural killer cell activity. Cell Immunol. 1988 Jul;114(2):246–256. doi: 10.1016/0008-8749(88)90319-x. [DOI] [PubMed] [Google Scholar]
- Biron C. A., Byron K. S., Sullivan J. L. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989 Jun 29;320(26):1731–1735. doi: 10.1056/NEJM198906293202605. [DOI] [PubMed] [Google Scholar]
- Brahmi Z., Bray R. A., Abrams S. I. Evidence for an early calcium-independent event in the activation of the human natural killer cell cytolytic mechanism. J Immunol. 1985 Dec;135(6):4108–4113. [PubMed] [Google Scholar]
- Chmura S. J., Nodzenski E., Weichselbaum R. R., Quintans J. Protein kinase C inhibition induces apoptosis and ceramide production through activation of a neutral sphingomyelinase. Cancer Res. 1996 Jun 15;56(12):2711–2714. [PubMed] [Google Scholar]
- Cosentino L. M., Cathcart M. K. A multi-step isolation scheme for obtaining CD16+ human natural killer cells. J Immunol Methods. 1987 Nov 5;103(2):195–204. doi: 10.1016/0022-1759(87)90290-0. [DOI] [PubMed] [Google Scholar]
- Fleisher G., Starr S., Koven N., Kamiya H., Douglas S. D., Henle W. A non-x-linked syndrome with susceptibility to severe Epstein-Barr virus infections. J Pediatr. 1982 May;100(5):727–730. doi: 10.1016/s0022-3476(82)80572-6. [DOI] [PubMed] [Google Scholar]
- Gonzalez G. A., Montminy M. R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 1989 Nov 17;59(4):675–680. doi: 10.1016/0092-8674(89)90013-5. [DOI] [PubMed] [Google Scholar]
- Hanna N. Expression of metastatic potential of tumor cells in young nude mice is correlated with low levels of natural killer cell-mediated cytotoxicity. Int J Cancer. 1980 Nov 15;26(5):675–680. doi: 10.1002/ijc.2910260521. [DOI] [PubMed] [Google Scholar]
- Houslay M. D., Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci. 1997 Jun;22(6):217–224. doi: 10.1016/s0968-0004(97)01050-5. [DOI] [PubMed] [Google Scholar]
- Jewett A., Bonavida B. Target-induced anergy of natural killer cytotoxic function is restricted to the NK-target conjugate subset. Cell Immunol. 1995 Jan;160(1):91–97. doi: 10.1016/0008-8749(95)80013-9. [DOI] [PubMed] [Google Scholar]
- Katz P., Zaytoun A. M., Fauci A. S. Mechanisms of human cell-mediated cytotoxicity. I. Modulation of natural killer cell activity by cyclic nucleotides. J Immunol. 1982 Jul;129(1):287–296. [PubMed] [Google Scholar]
- Kiessling R., Haller O. Natural killer cells in the mouse: an alternative immune surveillance mechanism? Contemp Top Immunobiol. 1978;8:171–201. doi: 10.1007/978-1-4684-0922-2_6. [DOI] [PubMed] [Google Scholar]
- Lotzová E. Definition and functions of natural killer cells. Nat Immun. 1993 Jul-Oct;12(4-5):169–176. [PubMed] [Google Scholar]
- Montague W., Cook J. R. The role of adenosine 3':5'-cyclic monophosphate in the regulation of insulin release by isolated rat islets of Langerhans. Biochem J. 1971 Mar;122(1):115–120. doi: 10.1042/bj1220115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montminy M. R., Bilezikjian L. M. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature. 1987 Jul 9;328(6126):175–178. doi: 10.1038/328175a0. [DOI] [PubMed] [Google Scholar]
- Perussia B., Trinchieri G. Inactivation of natural killer cell cytotoxic activity after interaction with target cells. J Immunol. 1981 Feb;126(2):754–758. [PubMed] [Google Scholar]
- Roder J. C., Klein M. Target-effector interaction in the natural killer cell system. IV. Modulation by cyclic nucleotides. J Immunol. 1979 Dec;123(6):2785–2790. [PubMed] [Google Scholar]
- Shenoy A. M., Sidner R. A., Brahmi Z. Signal transduction in cytotoxic lymphocytes: decreased calcium influx in NK cell inactivated with sensitive target cells. Cell Immunol. 1993 Apr 1;147(2):294–301. doi: 10.1006/cimm.1993.1070. [DOI] [PubMed] [Google Scholar]
- Steele T. A., Brahmi Z. Inhibition of human natural killer cell activity by the protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine is an early but post-binding event. J Immunol. 1988 Nov 1;141(9):3164–3169. [PubMed] [Google Scholar]
- Vitté-Mony I., Stancou R., Bertoglio J. H. Functional consequences of cAMP accumulation in human natural killer cells. Implications for IL-2 and IL-4 signal transduction. J Immunol. 1990 Dec 15;145(12):4272–4278. [PubMed] [Google Scholar]
- Walunas T. L., Lenschow D. J., Bakker C. Y., Linsley P. S., Freeman G. J., Green J. M., Thompson C. B., Bluestone J. A. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994 Aug;1(5):405–413. doi: 10.1016/1074-7613(94)90071-x. [DOI] [PubMed] [Google Scholar]
- Waterhouse P., Penninger J. M., Timms E., Wakeham A., Shahinian A., Lee K. P., Thompson C. B., Griesser H., Mak T. W. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995 Nov 10;270(5238):985–988. doi: 10.1126/science.270.5238.985. [DOI] [PubMed] [Google Scholar]
- Whalen M. M., Bankhurst A. D. Effects of beta-adrenergic receptor activation, cholera toxin and forskolin on human natural killer cell function. Biochem J. 1990 Dec 1;272(2):327–331. doi: 10.1042/bj2720327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whalen M. M., Doshi R. N., Bankhurst A. D. Effects of pertussis toxin treatment on human natural killer cell function. Immunology. 1992 Jul;76(3):402–407. [PMC free article] [PubMed] [Google Scholar]
- Whalen M. M., Doshi R. N., Homma Y., Bankhurst A. D. Phospholipase C activation in the cytotoxic response of human natural killer cells requires protein-tyrosine kinase activity. Immunology. 1993 Aug;79(4):542–547. [PMC free article] [PubMed] [Google Scholar]
- Windebank K. P., Abraham R. T., Powis G., Olsen R. A., Barna T. J., Leibson P. J. Signal transduction during human natural killer cell activation: inositol phosphate generation and regulation by cyclic AMP. J Immunol. 1988 Dec 1;141(11):3951–3957. [PubMed] [Google Scholar]
- Xiao J., Brahmi Z. Target cell-directed inactivation and IL-2-dependent reactivation of LAK cells. Cell Immunol. 1989 Sep;122(2):295–306. doi: 10.1016/0008-8749(89)90078-6. [DOI] [PubMed] [Google Scholar]
