Skip to main content
Immunology logoLink to Immunology
. 1997 Dec;92(4):429–436. doi: 10.1046/j.1365-2567.1997.00366.x

Lipids from Mycobacterium leprae cell wall suppress T-cell activation in vivo and in vitro.

A C Moura 1, M Mariano 1
PMCID: PMC1364147  PMID: 9497483

Abstract

The influence of Mycobacterium leprae cell wall lipids on lymphocyte functions has been investigated in vivo (delayed-type hypersensitivity) and in vitro. The inflammatory response has been earlier evaluated by the mouse footpad oedema model and the delipidated mycobacteria evoked a mild but significant inflammatory response. Herein a higher level of hypersensitivity reaction was observed with delipidated bacilli than with the intact mycobacteria. The lipids obtained from the extract of M. leprae external cell wall were used to prepare liposomes, which have not been shown to be toxic to lymphocytes. The method of lipidic extraction and the sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the lipid fraction did not reveal any trace of proteins. Thin-layer chromatography of this extract detected four different bands with an apolar character, suggestive of mycolic and fatty acids. These same M. leprae liposomes potently suppressed lymph node cells, as well CD4+ and CD8+ T-cell lines, and an antigen-specific T-cell clone (T 4-9) proliferation, even under potent stimulus. Cholesterol-choline liposomes, unrelated to M. leprae liposomes, used as a control in the biological assays showed no significant effect on lymphoblastic activity, which points to the specificity of M. leprae lipids. These data demonstrated that M. leprae cell wall lipids induce immune suppression in mice without causing any membrane alteration in T cells as assessed throughout kinetic studies in vitro. This fact is closely related to the down-regulating effect induced by M. leprae lipids which we have previously observed in macrophage functions in vivo and in vitro. Although this lipidic fraction showed a suppressive action on T lymphocytes in vitro (proliferation) and in vivo (delayed-type hypersensitivity), its possible significance in the establishment of a specific immune response to M. leprae must be further investigated.

Full text

PDF
429

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelberg R., Soares R., Ferreira P., Silva M. T. Induction of non-specific immunosuppression in mice by mycobacterial infections and its relationship to macrophage activation. Scand J Immunol. 1989 Aug;30(2):165–174. doi: 10.1111/j.1365-3083.1989.tb01198.x. [DOI] [PubMed] [Google Scholar]
  2. BLOCH H. Studies on the virulence of tubercle bacilli; isolation and biological properties of a constituent of virulent organisms. J Exp Med. 1950 Feb;91(2):197-218, pl. doi: 10.1084/jem.91.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berman J. S., Blumenthal R. L., Kornfeld H., Cook J. A., Cruikshank W. W., Vermeulen M. W., Chatterjee D., Belisle J. T., Fenton M. J. Chemotactic activity of mycobacterial lipoarabinomannans for human blood T lymphocytes in vitro. J Immunol. 1996 May 15;156(10):3828–3835. [PubMed] [Google Scholar]
  4. Bäckström B. T., Harris D. P., Prestidge R. L., Watson J. D. Genetic control of immune responses to the 18-kDa protein of Mycobacterium leprae. Different TH1 subsets may be involved in proliferative and delayed-type hypersensitivity responses. Cell Immunol. 1992 Jul;142(2):264–274. doi: 10.1016/0008-8749(92)90288-z. [DOI] [PubMed] [Google Scholar]
  5. Chehl S., Job C. K., Hastings R. C. Transmission of leprosy in nude mice. Am J Trop Med Hyg. 1985 Nov;34(6):1161–1166. doi: 10.4269/ajtmh.1985.34.1161. [DOI] [PubMed] [Google Scholar]
  6. Damle A., Mahadevan P. R. Nature of peritoneal macrophages from DCC immunized mice. Indian J Lepr. 1993 Oct-Dec;65(4):405–414. [PubMed] [Google Scholar]
  7. Desai S. D., Birdi T. J., Antia N. H. Correlation between macrophage activation and bactericidal function and Mycobacterium leprae antigen presentation in macrophages of leprosy patients and normal individuals. Infect Immun. 1989 Apr;57(4):1311–1317. doi: 10.1128/iai.57.4.1311-1317.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Douglas-Jones A. G., Wade S. M., Vaughan R. H., Watson J. D. Immunity to leprosy. IV. Murine T-cell proliferative responses to mycobacteria. Int J Lepr Other Mycobact Dis. 1986 Sep;54(3):367–379. [PubMed] [Google Scholar]
  9. Haanen J. B., de Waal Malefijt R., Res P. C., Kraakman E. M., Ottenhoff T. H., de Vries R. R., Spits H. Selection of a human T helper type 1-like T cell subset by mycobacteria. J Exp Med. 1991 Sep 1;174(3):583–592. doi: 10.1084/jem.174.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Howe R. C., Wondimu A., Demissee A., Frommel D. Functional heterogeneity among CD4+ T-cell clones from blood and skin lesions of leprosy patients. Identification of T-cell clones distinct from Th0, Th1 and Th2. Immunology. 1995 Apr;84(4):585–594. [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Leyva-Cobian F., Unanue E. R. Intracellular interference with antigen presentation. J Immunol. 1988 Sep 1;141(5):1445–1450. [PubMed] [Google Scholar]
  13. Mehra V., Bloom B. R., Torigian V. K., Mandich D., Reichel M., Young S. M., Salgame P., Convit J., Hunter S. W., McNeil M. Characterization of Mycobacterium leprae cell wall-associated proteins with the use of T lymphocyte clones. J Immunol. 1989 Apr 15;142(8):2873–2878. [PubMed] [Google Scholar]
  14. Mohagheghpour N., Munn M. W., Gelber R. H., Engleman E. G. Identification of an immunostimulating protein from Mycobacterium leprae. Infect Immun. 1990 Mar;58(3):703–710. doi: 10.1128/iai.58.3.703-710.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moura A. C., Mariano M. Dead Mycobacterium leprae inhibits phagocytosis by inflammatory macrophages in vivo. Participation of the bacteria cell lipids in the phenomenon. Mem Inst Oswaldo Cruz. 1990 Jul-Sep;85(3):381–382. doi: 10.1590/s0074-02761990000300020. [DOI] [PubMed] [Google Scholar]
  16. Moura A. C., Mariano M. Lipids from Mycobacterium leprae cell wall are endowed with an anti-inflammatory property and inhibit macrophage function in vivo. Immunology. 1996 Dec;89(4):613–618. doi: 10.1046/j.1365-2567.1996.d01-786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Persechini P. M., Young J. D., Almers W. Membrane channel formation by the lymphocyte pore-forming protein: comparison between susceptible and resistant target cells. J Cell Biol. 1990 Jun;110(6):2109–2116. doi: 10.1083/jcb.110.6.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rook G. A. Progress in the immunology of the mycobacterioses. Clin Exp Immunol. 1987 Jul;69(1):1–9. [PMC free article] [PubMed] [Google Scholar]
  19. Sibley L. D., Franzblau S. G., Krahenbuhl J. L. Intracellular fate of Mycobacterium leprae in normal and activated mouse macrophages. Infect Immun. 1987 Mar;55(3):680–685. doi: 10.1128/iai.55.3.680-685.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sibley L. D., Krahenbuhl J. L. Induction of unresponsiveness to gamma interferon in macrophages infected with Mycobacterium leprae. Infect Immun. 1988 Aug;56(8):1912–1919. doi: 10.1128/iai.56.8.1912-1919.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sieling P. A., Chatterjee D., Porcelli S. A., Prigozy T. I., Mazzaccaro R. J., Soriano T., Bloom B. R., Brenner M. B., Kronenberg M., Brennan P. J. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science. 1995 Jul 14;269(5221):227–230. doi: 10.1126/science.7542404. [DOI] [PubMed] [Google Scholar]
  22. Sieling P. A., Modlin R. L. Regulation of cytokine patterns in leprosy. Ann N Y Acad Sci. 1994 Aug 15;730:42–52. doi: 10.1111/j.1749-6632.1994.tb44238.x. [DOI] [PubMed] [Google Scholar]
  23. Silva C. L., Ekizlerian S. M., Fazioli R. A. Role of cord factor in the modulation of infection caused by mycobacteria. Am J Pathol. 1985 Feb;118(2):238–247. [PMC free article] [PubMed] [Google Scholar]
  24. Simon M. M., Weltzien H. U., Bühring H. J., Eichmann K. Aged murine killer T-cell clones acquire specific cytotoxicity for P815 mastocytoma cells. Nature. 1984 Mar 22;308(5957):367–370. doi: 10.1038/308367a0. [DOI] [PubMed] [Google Scholar]
  25. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  26. Tomioka H., Kishimoto T., Maw W. W. Phospholipids and reactive nitrogen intermediates collaborate in expression of the T cell mitogenesis-inhibitory activity of immunosuppressive macrophages induced in mycobacterial infection. Clin Exp Immunol. 1996 Feb;103(2):219–225. doi: 10.1046/j.1365-2249.1996.d01-614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhang L., Goren M. B., Holzer T. J., Andersen B. R. Effect of Mycobacterium tuberculosis-derived sulfolipid I on human phagocytic cells. Infect Immun. 1988 Nov;56(11):2876–2883. doi: 10.1128/iai.56.11.2876-2883.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES