Skip to main content
Immunology logoLink to Immunology
. 1997 Dec;92(4):512–518. doi: 10.1046/j.1365-2567.1997.00385.x

Endothelial production of MCP-1: modulation by heparin and consequences for mononuclear cell activation.

M S Douglas 1, S Ali 1, D A Rix 1, J G Zhang 1, J A Kirby 1
PMCID: PMC1364157  PMID: 9497493

Abstract

Heparin is a polyanionic glycosaminoglycan (GAG) that can bind with high affinity to a range of cytokines including interferon-gamma (IFN-gamma) and members of the chemokine superfamily. This GAG also possesses immunomodulatory activity in vivo and can antagonize the capacity of IFN-gamma to induce class II MHC antigen expression, and to up-regulate intercellular adhesion molecule-1, by cultured endothelial cells. Previous studies have shown that binding to cell-surface heparan sulphate is essential for optimal activity of IFN-gamma and that free heparin competitively inhibits this sequestration process. The present study was performed to increase our understanding of the immunosuppressive activity of heparin by investigation of potential antagonism of the production and function of monocyte chemotactic peptide-1 (MCP-1), a chemokine important for mononuclear leucocyte recruitment across vascular endothelium. It was found that mixture of heparin with IFN-gamma inhibited up-regulation of the signal transducer and activator of transcription protein, STAT-1 produced normally by treatment of endothelial cells with IFN-gamma. An inhibition of MCP-1 production was observed that was specifically caused by mixture of IFN-gamma with heparin-like, and therefore cytokine-binding, GAGs. It was also shown that mixture of heparin-like GAGs with MCP-1 inhibited the rapid tyrosine phosphorylation of phosphatidylinositol 3-kinase which is normally produced by treatment of mononuclear leucocytes with this chemokine. Blockade of this intracellular signalling event was associated with a reduction in the normal transendothelial migration response towards MCP-1. Results from this study indicate that soluble, heparin-like GAGs can block IFN-gamma-dependent up-regulation of MCP-1 production by cultured endothelial cells, and can also antagonize the leucocyte-activating and migration-promoting properties of pre-existing MCP-1. These activities may contribute to the immunomodulatory properties of heparin.

Full text

PDF
512

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. H., Lloyd A. R. Chemokines: leucocyte recruitment and activation cytokines. Lancet. 1997 Feb 15;349(9050):490–495. doi: 10.1016/s0140-6736(96)07524-1. [DOI] [PubMed] [Google Scholar]
  2. Aziz S., Tada Y., Gordon D., McDonald T. O., Fareed J., Verrier E. D. A reduction in accelerated graft coronary disease and an improvement in cardiac allograft survival using low molecular weight heparin in combination with cyclosporine. J Heart Lung Transplant. 1993 Jul-Aug;12(4):634–643. [PubMed] [Google Scholar]
  3. Brown Z., Gerritsen M. E., Carley W. W., Strieter R. M., Kunkel S. L., Westwick J. Chemokine gene expression and secretion by cytokine-activated human microvascular endothelial cells. Differential regulation of monocyte chemoattractant protein-1 and interleukin-8 in response to interferon-gamma. Am J Pathol. 1994 Oct;145(4):913–921. [PMC free article] [PubMed] [Google Scholar]
  4. Brown Z., Robson R. L., Westwick J. Regulation and expression of chemokines: potential role in glomerulonephritis. J Leukoc Biol. 1996 Jan;59(1):75–80. doi: 10.1002/jlb.59.1.75. [DOI] [PubMed] [Google Scholar]
  5. Danzer S. G., Kirchner H., Rink L. Cytokine interactions in human mixed lymphocyte culture. Transplantation. 1994 Jun 15;57(11):1638–1642. [PubMed] [Google Scholar]
  6. Darnell J. E., Jr, Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994 Jun 3;264(5164):1415–1421. doi: 10.1126/science.8197455. [DOI] [PubMed] [Google Scholar]
  7. Douglas M. S., Rix D. A., Dark J. H., Talbot D., Kirby J. A. Examination of the mechanism by which heparin antagonizes activation of a model endothelium by interferon-gamma (IFN-gamma). Clin Exp Immunol. 1997 Mar;107(3):578–584. doi: 10.1046/j.1365-2249.1997.3141206.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Däubener W., Nockemann S., Gutsche M., Hadding U. Heparin inhibits the antiparasitic and immune modulatory effects of human recombinant interferon-gamma. Eur J Immunol. 1995 Mar;25(3):688–692. doi: 10.1002/eji.1830250309. [DOI] [PubMed] [Google Scholar]
  9. Farrar M. A., Schreiber R. D. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol. 1993;11:571–611. doi: 10.1146/annurev.iy.11.040193.003035. [DOI] [PubMed] [Google Scholar]
  10. Fuller L., Carreno M., Esquenazi V., Zucker K., Zheng S., Roth D., Burke G., Nery J., Asthana D., Olson L. Characterization of anti-canine cytokine monoclonal antibodies specific for IFN-gamma: effect of anti-IFN-gamma on renal transplant rejection. Tissue Antigens. 1994 Mar;43(3):163–169. doi: 10.1111/j.1399-0039.1994.tb02317.x. [DOI] [PubMed] [Google Scholar]
  11. Gilat D., Hershkoviz R., Mekori Y. A., Vlodavsky I., Lider O. Regulation of adhesion of CD4+ T lymphocytes to intact or heparinase-treated subendothelial extracellular matrix by diffusible or anchored RANTES and MIP-1 beta. J Immunol. 1994 Dec 1;153(11):4899–4906. [PubMed] [Google Scholar]
  12. Halloran P. F., Goes N., Urmson J., Ramassar V., Hobart M., Sims T., Lui S. L., Miller L. W. MHC expression in organ transplants: lessons from the knock-out mice. Transplant Proc. 1997 Feb-Mar;29(1-2):1041–1044. doi: 10.1016/s0041-1345(96)00361-2. [DOI] [PubMed] [Google Scholar]
  13. Kapeller R., Cantley L. C. Phosphatidylinositol 3-kinase. Bioessays. 1994 Aug;16(8):565–576. doi: 10.1002/bies.950160810. [DOI] [PubMed] [Google Scholar]
  14. Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
  15. Kulane A., Ekre H. P., Perlmann P., Rombo L., Wahlgren M., Wahlin B. Effect of different fractions of heparin on Plasmodium falciparum merozoite invasion of red blood cells in vitro. Am J Trop Med Hyg. 1992 May;46(5):589–594. doi: 10.4269/ajtmh.1992.46.589. [DOI] [PubMed] [Google Scholar]
  16. Lagodzinski Z., Górski A., Wasik M. Immunosuppressive action of low-dose heparin. Effect on skin allograft survival. Transplantation. 1990 Oct;50(4):714–715. doi: 10.1097/00007890-199010000-00038. [DOI] [PubMed] [Google Scholar]
  17. Lantz M., Thysell H., Nilsson E., Olsson I. On the binding of tumor necrosis factor (TNF) to heparin and the release in vivo of the TNF-binding protein I by heparin. J Clin Invest. 1991 Dec;88(6):2026–2031. doi: 10.1172/JCI115530. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  18. Lee Y. J., Benveniste E. N. Stat1 alpha expression is involved in IFN-gamma induction of the class II transactivator and class II MHC genes. J Immunol. 1996 Aug 15;157(4):1559–1568. [PubMed] [Google Scholar]
  19. Lider O., Baharav E., Mekori Y. A., Miller T., Naparstek Y., Vlodavsky I., Cohen I. R. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins. J Clin Invest. 1989 Mar;83(3):752–756. doi: 10.1172/JCI113953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lortat-Jacob H., Grimaud J. A. Binding of interferon-gamma to heparan sulfate is restricted to the heparin-like domains and involves carboxylic--but not N-sulfated--groups. Biochim Biophys Acta. 1992 Sep 15;1117(2):126–130. doi: 10.1016/0304-4165(92)90069-7. [DOI] [PubMed] [Google Scholar]
  21. Lortat-Jacob H., Grimaud J. A. Interferon-gamma binds to heparan sulfate by a cluster of amino acids located in the C-terminal part of the molecule. FEBS Lett. 1991 Mar 11;280(1):152–154. doi: 10.1016/0014-5793(91)80225-r. [DOI] [PubMed] [Google Scholar]
  22. Lortat-Jacob H., Turnbull J. E., Grimaud J. A. Molecular organization of the interferon gamma-binding domain in heparan sulphate. Biochem J. 1995 Sep 1;310(Pt 2):497–505. doi: 10.1042/bj3100497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luster A. D., Greenberg S. M., Leder P. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med. 1995 Jul 1;182(1):219–231. doi: 10.1084/jem.182.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pober J. S., Gimbrone M. A., Jr, Lapierre L. A., Mendrick D. L., Fiers W., Rothlein R., Springer T. A. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol. 1986 Sep 15;137(6):1893–1896. [PubMed] [Google Scholar]
  25. Proost P., Wuyts A., Van Damme J. Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1. J Leukoc Biol. 1996 Jan;59(1):67–74. doi: 10.1002/jlb.59.1.67. [DOI] [PubMed] [Google Scholar]
  26. Qin S., LaRosa G., Campbell J. J., Smith-Heath H., Kassam N., Shi X., Zeng L., Buthcher E. C., Mackay C. R. Expression of monocyte chemoattractant protein-1 and interleukin-8 receptors on subsets of T cells: correlation with transendothelial chemotactic potential. Eur J Immunol. 1996 Mar;26(3):640–647. doi: 10.1002/eji.1830260320. [DOI] [PubMed] [Google Scholar]
  27. Rider C. Many cytokines and interleukins bind to glycosaminoglycans. Immunol Today. 1993 Dec;14(12):615–615. doi: 10.1016/0167-5699(93)90202-V. [DOI] [PubMed] [Google Scholar]
  28. Savage C. O., Hughes C. C., McIntyre B. W., Picard J. K., Pober J. S. Human CD4+ T cells proliferate to HLA-DR+ allogeneic vascular endothelium. Identification of accessory interactions. Transplantation. 1993 Jul;56(1):128–134. doi: 10.1097/00007890-199307000-00024. [DOI] [PubMed] [Google Scholar]
  29. Schindler U., Wu P., Rothe M., Brasseur M., McKnight S. L. Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity. 1995 Jun;2(6):689–697. doi: 10.1016/1074-7613(95)90013-6. [DOI] [PubMed] [Google Scholar]
  30. Tanaka Y., Adams D. H., Hubscher S., Hirano H., Siebenlist U., Shaw S. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature. 1993 Jan 7;361(6407):79–82. doi: 10.1038/361079a0. [DOI] [PubMed] [Google Scholar]
  31. Taub D. D., Murphy W. J., Asai O., Fenton R. G., Peltz G., Key M. L., Turcovski-Corrales S., Longo D. L. Induction of alloantigen-specific T cell tolerance through the treatment of human T lymphocytes with wortmannin. J Immunol. 1997 Mar 15;158(6):2745–2755. [PubMed] [Google Scholar]
  32. Taub D. D., Turcovski-Corrales S. M., Key M. L., Longo D. L., Murphy W. J. Chemokines and T lymphocyte activation: I. Beta chemokines costimulate human T lymphocyte activation in vitro. J Immunol. 1996 Mar 15;156(6):2095–2103. [PubMed] [Google Scholar]
  33. Turner L., Ward S. G., Westwick J. RANTES-activated human T lymphocytes. A role for phosphoinositide 3-kinase. J Immunol. 1995 Sep 1;155(5):2437–2444. [PubMed] [Google Scholar]
  34. Webb L. M., Ehrengruber M. U., Clark-Lewis I., Baggiolini M., Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7158–7162. doi: 10.1073/pnas.90.15.7158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wilson J. L., Cunningham A. C., Kirby J. A. Alloantigen presentation by B cells: analysis of the requirement for B-cell activation. Immunology. 1995 Nov;86(3):325–330. [PMC free article] [PubMed] [Google Scholar]
  36. Witt D. P., Lander A. D. Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol. 1994 May 1;4(5):394–400. doi: 10.1016/s0960-9822(00)00088-9. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES