Skip to main content
Immunology logoLink to Immunology
. 1997 Dec;92(4):571–576. doi: 10.1046/j.1365-2567.1997.00370.x

Differential display analysis of murine collagen-induced arthritis: cloning of the cDNA-encoding murine ATPase inhibitor.

E Yamada 1, N Ishiguro 1, O Miyaishi 1, A Takeuchi 1, I Nakashima 1, H Iwata 1, K Isobe 1
PMCID: PMC1364165  PMID: 9497501

Abstract

We used the differential display technique in order to detect a new gene involved in murine type II collagen-induced arthritis (CIA). In this study, we have identified a novel gene, IF1, whose expression level is increased during the natural course of CIA. Northern blot analyses suggest that IF1 is involved in the natural course of CIA but is not involved as a trigger of CIA. IF1 is considered to be the murine ATPase inhibitor gene for several reasons. First, IF1 shows an extremely high homology to the rat ATPase inhibitor; the highly conserved region between rat and bovine amino acid residues 22-45, which is the minimum sequence showing ATPase inhibitory activities, is also highly conserved in IF1. Second, IF1 possesses a histidine-rich region in the same area, which is thought to be important for regulation of mammalian inhibitors. Third, the tissue distribution of IF1 is very suggestive. The expression of IF1 was very strong in energetic organs such as the heart, brain and kidney, and the development of arthritis requires great amounts of ATP. As arthritis develops rapidly, the cellular ATP pool may be decreased. Before the ATP pool is exhausted, the ATPase inhibitor may serve as a brake for ATP hydrolysis. If the supply of free energy can be reduced, the inflammation of arthritis may in turn be restored. Our hypothesis is that the ATPase inhibitor is involved in regulating the inflammatory responses.

Full text

PDF
571

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asami K., Juniti K., Ernster L. Possible regulatory function of a mitochondrial ATPase inhibitor in respiratory chain-linked energy transfer. Biochim Biophys Acta. 1970;205(2):307–311. doi: 10.1016/0005-2728(70)90261-6. [DOI] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Cintrón N. M., Pedersen P. L. A protein inhibitor of the mitochondrial adenosine triphosphatase complex of rat liver. Purification and characterization. J Biol Chem. 1979 May 10;254(9):3439–3443. [PubMed] [Google Scholar]
  4. Harris D. A., von Tscharner V., Radda G. K. The ATPase inhibitor protein in oxidative phosphorylation. The rate-limiting factor to phosphorylation in submitochondrial particles. Biochim Biophys Acta. 1979 Oct 10;548(1):72–84. doi: 10.1016/0005-2728(79)90188-9. [DOI] [PubMed] [Google Scholar]
  5. Hashimoto T., Negawa Y., Tagawa K. Binding of intrinsic ATPase inhibitor to mitochondrial ATPase--stoichiometry of binding of nucleotides, inhibitor, and enzyme. J Biochem. 1981 Oct;90(4):1151–1157. doi: 10.1093/oxfordjournals.jbchem.a133567. [DOI] [PubMed] [Google Scholar]
  6. Hess H., Gately M. K., Rüde E., Schmitt E., Szeliga J., Germann T. High doses of interleukin-12 inhibit the development of joint disease in DBA/1 mice immunized with type II collagen in complete Freund's adjuvant. Eur J Immunol. 1996 Jan;26(1):187–191. doi: 10.1002/eji.1830260129. [DOI] [PubMed] [Google Scholar]
  7. Holmdahl R., Andersson M., Goldschmidt T. J., Gustafsson K., Jansson L., Mo J. A. Type II collagen autoimmunity in animals and provocations leading to arthritis. Immunol Rev. 1990 Dec;118:193–232. doi: 10.1111/j.1600-065x.1990.tb00817.x. [DOI] [PubMed] [Google Scholar]
  8. Holmdahl R., Jansson L., Andersson M., Larsson E. Immunogenetics of type II collagen autoimmunity and susceptibility to collagen arthritis. Immunology. 1988 Oct;65(2):305–310. [PMC free article] [PubMed] [Google Scholar]
  9. Ichikawa N., Yoshida Y., Hashimoto T., Ogasawara N., Yoshikawa H., Imamoto F., Tagawa K. Activation of ATP hydrolysis by an uncoupler in mutant mitochondria lacking an intrinsic ATPase inhibitor in yeast. J Biol Chem. 1990 Apr 15;265(11):6274–6278. [PubMed] [Google Scholar]
  10. Lebowitz M. S., Pedersen P. L. Protein inhibitor of mitochondrial ATP synthase: relationship of inhibitor structure to pH-dependent regulation. Arch Biochem Biophys. 1996 Jun 15;330(2):342–354. doi: 10.1006/abbi.1996.0261. [DOI] [PubMed] [Google Scholar]
  11. Lebowitz M. S., Pedersen P. L. Regulation of the mitochondrial ATP synthase/ATPase complex: cDNA cloning, sequence, overexpression, and secondary structural characterization of a functional protein inhibitor. Arch Biochem Biophys. 1993 Feb 15;301(1):64–70. doi: 10.1006/abbi.1993.1115. [DOI] [PubMed] [Google Scholar]
  12. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  13. Norling B., Tourikas C., Hamasur B., Glaser E. Evidence for an endogenous ATPase inhibitor protein in plant mitochondria. Purification and characterization. Eur J Biochem. 1990 Mar 10;188(2):247–252. doi: 10.1111/j.1432-1033.1990.tb15396.x. [DOI] [PubMed] [Google Scholar]
  14. PULLMAN M. E., MONROY G. C. A NATURALLY OCCURRING INHIBITOR OF MITOCHONDRIAL ADENOSINE TRIPHOSPHATASE. J Biol Chem. 1963 Nov;238:3762–3769. [PubMed] [Google Scholar]
  15. Sah J. F., Kumar C., Mohanty P. Purification and characterization of an ATPase inhibitor protein from buffalo mitochondria. Biochem Mol Biol Int. 1993 Nov;31(4):755–767. [PubMed] [Google Scholar]
  16. Schwerzmann K., Pedersen P. L. Proton--adenosinetriphosphatase complex of rat liver mitochondria: effect of energy state on its interaction with the adenosinetriphosphatase inhibitory peptide. Biochemistry. 1981 Oct 27;20(22):6305–6311. doi: 10.1021/bi00525a004. [DOI] [PubMed] [Google Scholar]
  17. Seki N., Sudo Y., Yoshioka T., Sugihara S., Fujitsu T., Sakuma S., Ogawa T., Hamaoka T., Senoh H., Fujiwara H. Type II collagen-induced murine arthritis. I. Induction and perpetuation of arthritis require synergy between humoral and cell-mediated immunity. J Immunol. 1988 Mar 1;140(5):1477–1484. [PubMed] [Google Scholar]
  18. Stuart J. M., Townes A. S., Kang A. H. Collagen autoimmune arthritis. Annu Rev Immunol. 1984;2:199–218. doi: 10.1146/annurev.iy.02.040184.001215. [DOI] [PubMed] [Google Scholar]
  19. Walker J. E., Gay N. J., Powell S. J., Kostina M., Dyer M. R. ATP synthase from bovine mitochondria: sequences of imported precursors of oligomycin sensitivity conferral protein, factor 6, and adenosinetriphosphatase inhibitor protein. Biochemistry. 1987 Dec 29;26(26):8613–8619. doi: 10.1021/bi00400a018. [DOI] [PubMed] [Google Scholar]
  20. Wooley P. H., Luthra H. S., Griffiths M. M., Stuart J. M., Huse A., David C. S. Type II collagen-induced arthritis in mice. IV. Variations in immunogenetic regulation provide evidence for multiple arthritogenic epitopes on the collagen molecule. J Immunol. 1985 Oct;135(4):2443–2451. [PubMed] [Google Scholar]
  21. Wooley P. H., Luthra H. S., Stuart J. M., David C. S. Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I region) linkage and antibody correlates. J Exp Med. 1981 Sep 1;154(3):688–700. doi: 10.1084/jem.154.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van de Stadt R. J., de Boer B. L., van Dam K. The interaction between the mitochondrial ATPase (F 1 ) and the ATPase inhibitor. Biochim Biophys Acta. 1973 Feb 22;292(2):338–349. doi: 10.1016/0005-2728(73)90040-6. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES