Skip to main content
Immunology logoLink to Immunology
. 1998 Jul;94(3):380–387. doi: 10.1046/j.1365-2567.1998.00523.x

Role of mRNA stability in the different patterns of cytokine production by CD4+ cells from young and old mice.

C Pioli 1, S Pucci 1, S Barile 1, D Frasca 1, G Doria 1
PMCID: PMC1364257  PMID: 9767421

Abstract

CD4+ cells from young (3 months) and old (19 months) mice were stimulated by plate-bound anti-CD3 monoclonal antibody (mAb) alone or also by soluble anti-CD28 mAb. Supernatants were analysed by enzyme-linked immunosorbent assay (ELISA) to determine cytokine concentrations. Total RNA was extracted from cells, reverse transcribed and the cDNA amplified by polymerase chain reaction (PCR) to evaluate the amount of specific mRNA. The results indicate that anti-CD3 alone is not sufficient to induce interleukin-2 (IL-2) production in CD4+ cells from both young and old mice. However, anti-CD28, together with anti-CD3 mAb, induces a much higher production of IL-2 in CD4+ cells from young as compared with old mice. Conversely, interferon-gamma (IFN-gamma) production is also induced by anti-CD3 alone and is higher in CD4+ cells from old as compared with young mice. Upon addition of anti-CD28 mAb, IFN-gamma production increases in both groups, but it remains much higher in old than in young mice. Also the production of IL-4 and IL-10 is induced by anti-CD3 mAb but it is increased by the addition of anti-CD28 mAb. CD4+ cells from old mice produce more IL-4 and IL-10 as compared with cells from young mice. The amounts of cytokine specific mRNA in CD4+ cells from young and old mice parallel the cytokine levels in culture supernatants. Results on the mRNA turnover indicate that when CD4+ cells are stimulated by anti-CD3 or costimulated also by anti-CD28 mAb, the IFN-gamma, IL-4 and IL-10 specific mRNAs are more stable in old than in young mice, suggesting that mRNA stability has a relevant role in the different patterns of cytokine production.

Full text

PDF
380

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Salmon M., Janossy G. The synergy between naive and memory T cells during activation. Immunol Today. 1991 Jun;12(6):184–188. doi: 10.1016/0167-5699(91)90050-4. [DOI] [PubMed] [Google Scholar]
  2. Araneo B. A., Dowell T., Diegel M., Daynes R. A. Dihydrotestosterone exerts a depressive influence on the production of interleukin-4 (IL-4), IL-5, and gamma-interferon, but not IL-2 by activated murine T cells. Blood. 1991 Aug 1;78(3):688–699. [PubMed] [Google Scholar]
  3. Cai N. S., Li D. D., Cheung H. T., Richardson A. The expression of granulocyte/macrophage colony-stimulating factor in activated mouse lymphocytes declines with age. Cell Immunol. 1990 Oct 15;130(2):311–319. doi: 10.1016/0008-8749(90)90274-u. [DOI] [PubMed] [Google Scholar]
  4. Croft M., Bradley L. M., Swain S. L. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol. 1994 Mar 15;152(6):2675–2685. [PubMed] [Google Scholar]
  5. Doria G., Frasca D. Genes, immunity, and senescence: looking for a link. Immunol Rev. 1997 Dec;160:159–170. doi: 10.1111/j.1600-065x.1997.tb01036.x. [DOI] [PubMed] [Google Scholar]
  6. Doria G., Frasca D. Regulation of cytokine production in aging mice. Ann N Y Acad Sci. 1994 Nov 25;741:299–304. doi: 10.1111/j.1749-6632.1994.tb23113.x. [DOI] [PubMed] [Google Scholar]
  7. Ehlers S., Smith K. A. Differentiation of T cell lymphokine gene expression: the in vitro acquisition of T cell memory. J Exp Med. 1991 Jan 1;173(1):25–36. doi: 10.1084/jem.173.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engwerda C. R., Handwerger B. S., Fox B. S. Aged T cells are hyporesponsive to costimulation mediated by CD28. J Immunol. 1994 Apr 15;152(8):3740–3747. [PubMed] [Google Scholar]
  9. Ernst D. N., Hobbs M. V., Torbett B. E., Glasebrook A. L., Rehse M. A., Bottomly K., Hayakawa K., Hardy R. R., Weigle W. O. Differences in the expression profiles of CD45RB, Pgp-1, and 3G11 membrane antigens and in the patterns of lymphokine secretion by splenic CD4+ T cells from young and aged mice. J Immunol. 1990 Sep 1;145(5):1295–1302. [PubMed] [Google Scholar]
  10. Frasca D., Pucci S., Goso C., Barattini P., Barile S., Pioli C., Doria G. Regulation of cytokine production in aging: use of recombinant cytokines to upregulate mitogen-stimulated spleen cells. Mech Ageing Dev. 1997 Feb;93(1-3):157–169. doi: 10.1016/s0047-6374(96)01825-8. [DOI] [PubMed] [Google Scholar]
  11. Fraser J. D., Irving B. A., Crabtree G. R., Weiss A. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science. 1991 Jan 18;251(4991):313–316. doi: 10.1126/science.1846244. [DOI] [PubMed] [Google Scholar]
  12. Ghosh P., Tan T. H., Rice N. R., Sica A., Young H. A. The interleukin 2 CD28-responsive complex contains at least three members of the NF kappa B family: c-Rel, p50, and p65. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1696–1700. doi: 10.1073/pnas.90.5.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grossmann A., Maggio-Price L., Jinneman J. C., Rabinovitch P. S. Influence of aging on intracellular free calcium and proliferation of mouse T-cell subsets from various lymphoid organs. Cell Immunol. 1991 Jun;135(1):118–131. doi: 10.1016/0008-8749(91)90259-e. [DOI] [PubMed] [Google Scholar]
  14. Hara T., Fu S. M., Hansen J. A. Human T cell activation. II. A new activation pathway used by a major T cell population via a disulfide-bonded dimer of a 44 kilodalton polypeptide (9.3 antigen). J Exp Med. 1985 Jun 1;161(6):1513–1524. doi: 10.1084/jem.161.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hobbs M. V., Ernst D. N., Torbett B. E., Glasebrook A. L., Rehse M. A., McQuitty D. N., Thoman M. L., Bottomly K., Rothermel A. L., Noonan D. J. Cell proliferation and cytokine production by CD4+ cells from old mice. J Cell Biochem. 1991 Aug;46(4):312–320. doi: 10.1002/jcb.240460406. [DOI] [PubMed] [Google Scholar]
  16. Hobbs M. V., Weigle W. O., Noonan D. J., Torbett B. E., McEvilly R. J., Koch R. J., Cardenas G. J., Ernst D. N. Patterns of cytokine gene expression by CD4+ T cells from young and old mice. J Immunol. 1993 Apr 15;150(8 Pt 1):3602–3614. [PubMed] [Google Scholar]
  17. Jenkins M. K., Ashwell J. D., Schwartz R. H. Allogeneic non-T spleen cells restore the responsiveness of normal T cell clones stimulated with antigen and chemically modified antigen-presenting cells. J Immunol. 1988 May 15;140(10):3324–3330. [PubMed] [Google Scholar]
  18. Jenkins M. K., Taylor P. S., Norton S. D., Urdahl K. B. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol. 1991 Oct 15;147(8):2461–2466. [PubMed] [Google Scholar]
  19. June C. H., Ledbetter J. A., Linsley P. S., Thompson C. B. Role of the CD28 receptor in T-cell activation. Immunol Today. 1990 Jun;11(6):211–216. doi: 10.1016/0167-5699(90)90085-n. [DOI] [PubMed] [Google Scholar]
  20. Lee W. T., Yin X. M., Vitetta E. S. Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells. J Immunol. 1990 May 1;144(9):3288–3295. [PubMed] [Google Scholar]
  21. Lenschow D. J., Walunas T. L., Bluestone J. A. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258. doi: 10.1146/annurev.immunol.14.1.233. [DOI] [PubMed] [Google Scholar]
  22. Linton P. J., Haynes L., Klinman N. R., Swain S. L. Antigen-independent changes in naive CD4 T cells with aging. J Exp Med. 1996 Nov 1;184(5):1891–1900. doi: 10.1084/jem.184.5.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luqman M., Bottomly K. Activation requirements for CD4+ T cells differing in CD45R expression. J Immunol. 1992 Oct 1;149(7):2300–2306. [PubMed] [Google Scholar]
  24. Martin P. J., Ledbetter J. A., Morishita Y., June C. H., Beatty P. G., Hansen J. A. A 44 kilodalton cell surface homodimer regulates interleukin 2 production by activated human T lymphocytes. J Immunol. 1986 May 1;136(9):3282–3287. [PubMed] [Google Scholar]
  25. McKnight A. J., Perez V. L., Shea C. M., Gray G. S., Abbas A. K. Costimulator dependence of lymphokine secretion by naive and activated CD4+ T lymphocytes from TCR transgenic mice. J Immunol. 1994 Jun 1;152(11):5220–5225. [PubMed] [Google Scholar]
  26. Miller R. A. Aging and immune function. Int Rev Cytol. 1991;124:187–215. doi: 10.1016/s0074-7696(08)61527-2. [DOI] [PubMed] [Google Scholar]
  27. Miller R. A. The aging immune system: primer and prospectus. Science. 1996 Jul 5;273(5271):70–74. doi: 10.1126/science.273.5271.70. [DOI] [PubMed] [Google Scholar]
  28. Mueller D. L., Jenkins M. K., Schwartz R. H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–480. doi: 10.1146/annurev.iy.07.040189.002305. [DOI] [PubMed] [Google Scholar]
  29. Nagelkerken L., Hertogh-Huijbregts A., Dobber R., Dräger A. Age-related changes in lymphokine production related to a decreased number of CD45RBhi CD4+ T cells. Eur J Immunol. 1991 Feb;21(2):273–281. doi: 10.1002/eji.1830210206. [DOI] [PubMed] [Google Scholar]
  30. Nagy E., Buhlmann J. E., Henics T., Waugh M., Rigby W. F. Selective modulation of IFN-gamma mRNA stability by IL-12/NKSF. Cell Immunol. 1994 Dec;159(2):140–151. doi: 10.1006/cimm.1994.1303. [DOI] [PubMed] [Google Scholar]
  31. Rottenberg M. E., Sporrong L., Persson I., Wigzell H., Orn A. Cytokine gene expression during infection of mice lacking CD4 and/or CD8 with Trypanosoma cruzi. Scand J Immunol. 1995 Feb;41(2):164–170. doi: 10.1111/j.1365-3083.1995.tb03549.x. [DOI] [PubMed] [Google Scholar]
  32. Schwartz R. H. A cell culture model for T lymphocyte clonal anergy. Science. 1990 Jun 15;248(4961):1349–1356. doi: 10.1126/science.2113314. [DOI] [PubMed] [Google Scholar]
  33. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  34. Swain S. L., Bradley L. M., Croft M., Tonkonogy S., Atkins G., Weinberg A. D., Duncan D. D., Hedrick S. M., Dutton R. W., Huston G. Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol Rev. 1991 Oct;123:115–144. doi: 10.1111/j.1600-065x.1991.tb00608.x. [DOI] [PubMed] [Google Scholar]
  35. Testi R., Lanier L. L. Functional expression of CD28 on T cell antigen receptor gamma/delta-bearing T lymphocytes. Eur J Immunol. 1989 Jan;19(1):185–188. doi: 10.1002/eji.1830190129. [DOI] [PubMed] [Google Scholar]
  36. Van de Velde H., Lorré K., Bakkus M., Thielemans K., Ceuppens J. L., de Boer M. CD45RO+ memory T cells but not CD45RA+ naive T cells can be efficiently activated by remote co-stimulation with B7. Int Immunol. 1993 Nov;5(11):1483–1487. doi: 10.1093/intimm/5.11.1483. [DOI] [PubMed] [Google Scholar]
  37. Weaver C. T., Unanue E. R. The costimulatory function of antigen-presenting cells. Immunol Today. 1990 Feb;11(2):49–55. doi: 10.1016/0167-5699(90)90018-5. [DOI] [PubMed] [Google Scholar]
  38. Weiss A., Manger B., Imboden J. Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J Immunol. 1986 Aug 1;137(3):819–825. [PubMed] [Google Scholar]
  39. Wilder J. A., Yuan D. Regulation of IFN-gamma mRNA production in murine natural killer cells. Int Immunol. 1995 Apr;7(4):575–582. doi: 10.1093/intimm/7.4.575. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES