Skip to main content
Immunology logoLink to Immunology
. 1998 Jul;94(3):445–454. doi: 10.1046/j.1365-2567.1998.00514.x

Human and murine T-cell responses to allelic forms of a malaria circumsporozoite protein epitope support a polyvalent vaccine strategy.

Y Zevering 1, C Khamboonruang 1, M F Good 1
PMCID: PMC1364266  PMID: 9767430

Abstract

Mouse models and a recent vaccine trial have indicated the importance of T-cell immunity to the circumsporozoite protein (CSP) of malaria sporozoites. One of the major impediments for the development of a CSP-based vaccine is that human T-cell epitopes, identified on the CSP, span regions of significant point mutational polymorphism. Studies with human and mouse T-cell clones have indicated that this polymorphism affects T-cell cross-reactivity to Th2R and Th3R, the two most polymorphic and immunodominant epitopes. We extend this observation with polyclonal human T-cell lines, from 11 donors, raised to known variants of Th2R. These lines showed limited but variable cross-reactivity with the heterologous peptides. T cells from B10.A4(R) (I-Ak) mice immunized with each of 18 natural variants of Th2R indicated a similar, limited, cross-reactivity. I-Ak competition assays showed that a number of peptides were unable to bind because of a single polymorphic residue. In both the human and mouse assays, analysis of the sequences of immunogenic cross-reactive and non-cross-reactive peptides suggested that the individual polymorphic residues affect the three-dimensional conformation of the peptide within the major histocompatibility complex (MHC) groove in an, as yet, unpredictable way. These observations argue that design of an epitope able to generate broad cross-reactivity is, to date, not possible. However, despite the limited cross-reactivity of the individual human T-cell lines, most of the donors had T-cell repertoires capable of recognizing all or nearly all of the variants tested, which supports a strategy using a multivalent vaccine.

Full text

PDF
445

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal A., Kumar S., Jaffe R., Hone D., Gross M., Sadoff J. Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells. J Exp Med. 1990 Oct 1;172(4):1083–1090. doi: 10.1084/jem.172.4.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen P. M., Unanue E. R. Processing and presentation of hen egg-white lysozyme by macrophages. Immunobiology. 1984 Dec;168(3-5):182–188. doi: 10.1016/S0171-2985(84)80109-6. [DOI] [PubMed] [Google Scholar]
  3. Bhayani H., Paterson Y. Analysis of peptide binding patterns in different major histocompatibility complex/T cell receptor complexes using pigeon cytochrome c-specific T cell hybridomas. Evidence that a single peptide binds major histocompatibility complex in different conformations. J Exp Med. 1989 Nov 1;170(5):1609–1625. doi: 10.1084/jem.170.5.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boehncke W. H., Takeshita T., Pendleton C. D., Houghten R. A., Sadegh-Nasseri S., Racioppi L., Berzofsky J. A., Germain R. N. The importance of dominant negative effects of amino acid side chain substitution in peptide-MHC molecule interactions and T cell recognition. J Immunol. 1993 Jan 15;150(2):331–341. [PubMed] [Google Scholar]
  5. Doolan D. L., Houghten R. A., Good M. F. Location of human cytotoxic T cell epitopes within a polymorphic domain of the Plasmodium falciparum circumsporozoite protein. Int Immunol. 1991 Jun;3(6):511–516. doi: 10.1093/intimm/3.6.511. [DOI] [PubMed] [Google Scholar]
  6. Fern J., Good M. F. Promiscuous malaria peptide epitope stimulates CD45Ra T cells from peripheral blood of nonexposed donors. J Immunol. 1992 Feb 1;148(3):907–913. [PubMed] [Google Scholar]
  7. Good M. F., Maloy W. L., Lunde M. N., Margalit H., Cornette J. L., Smith G. L., Moss B., Miller L. H., Berzofsky J. A. Construction of synthetic immunogen: use of new T-helper epitope on malaria circumsporozoite protein. Science. 1987 Feb 27;235(4792):1059–1062. doi: 10.1126/science.2434994. [DOI] [PubMed] [Google Scholar]
  8. Good M. F., Pombo D., Maloy W. L., de la Cruz V. F., Miller L. H., Berzofsky J. A. Parasite polymorphism present within minimal T cell epitopes of Plasmodium falciparum circumsporozoite protein. J Immunol. 1988 Mar 1;140(5):1645–1650. [PubMed] [Google Scholar]
  9. Good M. F., Pombo D., Quakyi I. A., Riley E. M., Houghten R. A., Menon A., Alling D. W., Berzofsky J. A., Miller L. H. Human T-cell recognition of the circumsporozoite protein of Plasmodium falciparum: immunodominant T-cell domains map to the polymorphic regions of the molecule. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1199–1203. doi: 10.1073/pnas.85.4.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Good M. F., Zevering Y., Currier J., Bilsborough J. 'Original antigenic sin', T cell memory, and malaria sporozoite immunity: an hypothesis for immune evasion. Parasite Immunol. 1993 Apr;15(4):187–193. doi: 10.1111/j.1365-3024.1993.tb00599.x. [DOI] [PubMed] [Google Scholar]
  11. Hill A. V., Elvin J., Willis A. C., Aidoo M., Allsopp C. E., Gotch F. M., Gao X. M., Takiguchi M., Greenwood B. M., Townsend A. R. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature. 1992 Dec 3;360(6403):434–439. doi: 10.1038/360434a0. [DOI] [PubMed] [Google Scholar]
  12. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hughes A. L. Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics. 1991 Feb;127(2):345–353. doi: 10.1093/genetics/127.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Malik A., Egan J. E., Houghten R. A., Sadoff J. C., Hoffman S. L. Human cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3300–3304. doi: 10.1073/pnas.88.8.3300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moreno A., Clavijo P., Edelman R., Davis J., Sztein M., Sinigaglia F., Nardin E. CD4+ T cell clones obtained from Plasmodium falciparum sporozoite-immunized volunteers recognize polymorphic sequences of the circumsporozoite protein. J Immunol. 1993 Jul 1;151(1):489–499. [PubMed] [Google Scholar]
  16. Reay P. A., Kantor R. M., Davis M. M. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93-103). J Immunol. 1994 Apr 15;152(8):3946–3957. [PubMed] [Google Scholar]
  17. Rodrigues M., Nussenzweig R. S., Romero P., Zavala F. The in vivo cytotoxic activity of CD8+ T cell clones correlates with their levels of expression of adhesion molecules. J Exp Med. 1992 Apr 1;175(4):895–905. doi: 10.1084/jem.175.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rénia L., Grillot D., Marussig M., Corradin G., Miltgen F., Lambert P. H., Mazier D., Del Giudice G. Effector functions of circumsporozoite peptide-primed CD4+ T cell clones against Plasmodium yoelii liver stages. J Immunol. 1993 Feb 15;150(4):1471–1478. [PubMed] [Google Scholar]
  19. Sadoff J. C., Ballou W. R., Baron L. S., Majarian W. R., Brey R. N., Hockmeyer W. T., Young J. F., Cryz S. J., Ou J., Lowell G. H. Oral Salmonella typhimurium vaccine expressing circumsporozoite protein protects against malaria. Science. 1988 Apr 15;240(4850):336–338. doi: 10.1126/science.3281260. [DOI] [PubMed] [Google Scholar]
  20. Sedegah M., Sim B. K., Mason C., Nutman T., Malik A., Roberts C., Johnson A., Ochola J., Koech D., Were B. Naturally acquired CD8+ cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein. J Immunol. 1992 Aug 1;149(3):966–971. [PubMed] [Google Scholar]
  21. Udhayakumar V., Shi Y. P., Kumar S., Jue D. L., Wohlhueter R. M., Lal A. A. Antigenic diversity in the circumsporozoite protein of Plasmodium falciparum abrogates cytotoxic-T-cell recognition. Infect Immun. 1994 Apr;62(4):1410–1413. doi: 10.1128/iai.62.4.1410-1413.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Walden P. T-cell epitope determination. Curr Opin Immunol. 1996 Feb;8(1):68–74. doi: 10.1016/s0952-7915(96)80107-5. [DOI] [PubMed] [Google Scholar]
  23. Wraith D. C., Smilek D. E., Mitchell D. J., Steinman L., McDevitt H. O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell. 1989 Oct 20;59(2):247–255. doi: 10.1016/0092-8674(89)90287-0. [DOI] [PubMed] [Google Scholar]
  24. Zevering Y., Amante F., Smillie A., Currier J., Smith G., Houghten R. A., Good M. F. High frequency of malaria-specific T cells in non-exposed humans. Eur J Immunol. 1992 Mar;22(3):689–696. doi: 10.1002/eji.1830220311. [DOI] [PubMed] [Google Scholar]
  25. Zevering Y., Houghten R. A., Frazer I. H., Good M. F. Major population differences in T cell response to a malaria sporozoite vaccine candidate. Int Immunol. 1990;2(10):945–955. doi: 10.1093/intimm/2.10.945. [DOI] [PubMed] [Google Scholar]
  26. Zevering Y., Khamboonruang C., Good M. F. Effect of polymorphism of sporozoite antigens on T-cell activation. Res Immunol. 1994 Jul-Aug;145(6):469–476. doi: 10.1016/s0923-2494(94)80178-9. [DOI] [PubMed] [Google Scholar]
  27. Zevering Y., Khamboonruang C., Good M. F. Natural amino acid polymorphisms of the circumsporozoite protein of Plasmodium falciparum abrogate specific human CD4+ T cell responsiveness. Eur J Immunol. 1994 Jun;24(6):1418–1425. doi: 10.1002/eji.1830240627. [DOI] [PubMed] [Google Scholar]
  28. Zevering Y., Khamboonruang C., Rungruengthanakit K., Tungviboonchai L., Ruengpipattanapan J., Bathurst I., Barr P., Good M. F. Life-spans of human T-cell responses to determinants from the circumsporozoite proteins of Plasmodium falciparum and Plasmodium vivax. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6118–6122. doi: 10.1073/pnas.91.13.6118. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES