Skip to main content

PMC Search Update

PMC Beta search will replace the current PMC search the week of September 7, 2025. Try out PMC Beta search now and give us your feedback. Learn more

Immunology logoLink to Immunology
. 1998 Oct;95(2):226–233. doi: 10.1046/j.1365-2567.1998.00593.x

The role of gammadelta T cells in induction of bacterial antigen-specific protective CD8+ cytotoxic T cells in immune response against the intracellular bacteria Listeria monocytogenes.

A Nomura 1, G Matsuzaki 1, H Takada 1, K Hiromatsu 1, S Nabeshima 1, T Nakamura 1, K Kishihara 1, K Nomoto 1
PMCID: PMC1364309  PMID: 9824480

Abstract

The role of T-cell receptor (TCR) gammadelta T cells in the induction of protective TCR alphabeta T cells against infection by the intracellular bacteria Listeria monocytogenes was analysed. We found that depletion of gammadelta T cells by anti-TCR delta monoclonal antibody treatment before intravenous immunization of mice with a sublethal dose of viable L. monocytogenes resulted in reduction of protection against secondary challenge infection in the immunized mice. The gammadelta T-cell depletion also reduced induction of protective alphabeta T cells capable of transferring the protection against challenge infection of L. monocytogenes into naive mice. Furthermore, the protective T cells that were affected by the gammadelta T-cell depletion were suggested to be CD8+ cytotoxic T cells rather than CD4+ T cells by the following observations. First, induction of cytotoxic T lymphocytes specific to a L. monocytogenes-derived H-2Kd-restricted peptide (listeriolysin O 91-99) was significantly suppressed by gammadelta T-cell depletion before immunization. Second, gammadelta T-cell depletion did not affect cytokine production and proliferation of T cells from immunized mice in response to in vitro stimulation with heat-killed Listeria which preferentially stimulates CD4+ T cells. Third, CD8+ alphabeta T cells from control immunized mice transferred protection against infection of L. monocytogenes into naive mice but only a limited degree of protection was transferred by CD8+ T cells from the gammadelta T-cell-depleted immunized mice; and fourth, CD4+ alphabeta T cells from the gammadelta T-cell-depleted mice transferred a similar level of protection as those from the control immunized mice. All these results suggest that gammadelta T cells participate in establishment of protective immunity against intracellular bacteria by supporting priming of bacterial antigen-specific CD8+ cytotoxic T cells.

Full text

PDF
226

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellone M., Iezzi G., Manfredi A. A., Protti M. P., Dellabona P., Casorati G., Rugarli C. In vitro priming of cytotoxic T lymphocytes against poorly immunogenic epitopes by engineered antigen-presenting cells. Eur J Immunol. 1994 Nov;24(11):2691–2698. doi: 10.1002/eji.1830241118. [DOI] [PubMed] [Google Scholar]
  2. Bishop D. K., Hinrichs D. J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol. 1987 Sep 15;139(6):2005–2009. [PubMed] [Google Scholar]
  3. Brunt L. M., Portnoy D. A., Unanue E. R. Presentation of Listeria monocytogenes to CD8+ T cells requires secretion of hemolysin and intracellular bacterial growth. J Immunol. 1990 Dec 1;145(11):3540–3546. [PubMed] [Google Scholar]
  4. Chen W. F., Zlotnik A. IL-10: a novel cytotoxic T cell differentiation factor. J Immunol. 1991 Jul 15;147(2):528–534. [PubMed] [Google Scholar]
  5. Czuprynski C. J., Brown J. F. Dual regulation of anti-bacterial resistance and inflammatory neutrophil and macrophage accumulation by L3T4+ and Lyt 2+ Listeria-immune T cells. Immunology. 1987 Feb;60(2):287–293. [PMC free article] [PubMed] [Google Scholar]
  6. Dieli F., Asherson G. L., Sireci G., Dominici R., Gervasi F., Vendetti S., Colizzi V., Salerno A. gamma delta cells involved in contact sensitivity preferentially rearrange the Vgamma3 region and require interleukin-7. Eur J Immunol. 1997 Jan;27(1):206–214. doi: 10.1002/eji.1830270131. [DOI] [PubMed] [Google Scholar]
  7. Flesch I. E., Hess J. H., Huang S., Aguet M., Rothe J., Bluethmann H., Kaufmann S. H. Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon gamma and tumor necrosis factor alpha. J Exp Med. 1995 May 1;181(5):1615–1621. doi: 10.1084/jem.181.5.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fu Y. X., Roark C. E., Kelly K., Drevets D., Campbell P., O'Brien R., Born W. Immune protection and control of inflammatory tissue necrosis by gamma delta T cells. J Immunol. 1994 Oct 1;153(7):3101–3115. [PubMed] [Google Scholar]
  9. Fujihashi K., Kiyono H., Aicher W. K., Green D. R., Singh B., Eldridge J. H., McGhee J. R. Immunoregulatory function of CD3+, CD4-, and CD8- T cells. Gamma delta T cell receptor-positive T cells from nude mice abrogate oral tolerance. J Immunol. 1989 Dec 1;143(11):3415–3422. [PubMed] [Google Scholar]
  10. Fung-Leung W. P., Schilham M. W., Rahemtulla A., Kündig T. M., Vollenweider M., Potter J., van Ewijk W., Mak T. W. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell. 1991 May 3;65(3):443–449. doi: 10.1016/0092-8674(91)90462-8. [DOI] [PubMed] [Google Scholar]
  11. Gorczynski R. M., Cohen Z., Leung Y., Chen Z. Gamma delta TCR+ hybridomas derived from mice preimmunized via the portal vein adoptively transfer increased skin allograft survival in vivo. J Immunol. 1996 Jul 15;157(2):574–581. [PubMed] [Google Scholar]
  12. Guo Y., Ziegler H. K., Safley S. A., Niesel D. W., Vaidya S., Klimpel G. R. Human T-cell recognition of Listeria monocytogenes: recognition of listeriolysin O by TcR alpha beta + and TcR gamma delta + T cells. Infect Immun. 1995 Jun;63(6):2288–2294. doi: 10.1128/iai.63.6.2288-2294.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harding F. A., Allison J. P. CD28-B7 interactions allow the induction of CD8+ cytotoxic T lymphocytes in the absence of exogenous help. J Exp Med. 1993 Jun 1;177(6):1791–1796. doi: 10.1084/jem.177.6.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haregewoin A., Soman G., Hom R. C., Finberg R. W. Human gamma delta+ T cells respond to mycobacterial heat-shock protein. Nature. 1989 Jul 27;340(6231):309–312. doi: 10.1038/340309a0. [DOI] [PubMed] [Google Scholar]
  15. Harty J. T., Bevan M. J. CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J Exp Med. 1992 Jun 1;175(6):1531–1538. doi: 10.1084/jem.175.6.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harty J. T., Bevan M. J. Specific immunity to Listeria monocytogenes in the absence of IFN gamma. Immunity. 1995 Jul;3(1):109–117. doi: 10.1016/1074-7613(95)90163-9. [DOI] [PubMed] [Google Scholar]
  17. Harty J. T., Schreiber R. D., Bevan M. J. CD8 T cells can protect against an intracellular bacterium in an interferon gamma-independent fashion. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11612–11616. doi: 10.1073/pnas.89.23.11612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hsieh B., Schrenzel M. D., Mulvania T., Lepper H. D., DiMolfetto-Landon L., Ferrick D. A. In vivo cytokine production in murine listeriosis. Evidence for immunoregulation by gamma delta+ T cells. J Immunol. 1996 Jan 1;156(1):232–237. [PubMed] [Google Scholar]
  19. Hsieh C. S., Macatonia S. E., Tripp C. S., Wolf S. F., O'Garra A., Murphy K. M. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993 Apr 23;260(5107):547–549. doi: 10.1126/science.8097338. [DOI] [PubMed] [Google Scholar]
  20. Kaufmann S. H. Immunity against intracellular bacteria: biological effector functions and antigen specificity of T lymphocytes. Curr Top Microbiol Immunol. 1988;138:141–176. [PubMed] [Google Scholar]
  21. Kaufmann S. H. Immunity to intracellular bacteria. Annu Rev Immunol. 1993;11:129–163. doi: 10.1146/annurev.iy.11.040193.001021. [DOI] [PubMed] [Google Scholar]
  22. Kaufmann S. H., Simon M. M., Hahn H. Regulatory interactions between macrophages and T-cell subsets in Listeria monocytogenes-specific T-cell activation. Infect Immun. 1982 Dec;38(3):907–913. doi: 10.1128/iai.38.3.907-913.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ke Y., Pearce K., Lake J. P., Ziegler H. K., Kapp J. A. Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J Immunol. 1997 Apr 15;158(8):3610–3618. [PubMed] [Google Scholar]
  24. Kongshavn P. A., Skamene E. The role of natural resistance in protection of the murine host from listeriosis. Clin Invest Med. 1984;7(4):253–257. [PubMed] [Google Scholar]
  25. Kratz S. S., Kurlander R. J. Characterization of the pattern of inflammatory cell influx and cytokine production during the murine host response to Listeria monocytogenes. J Immunol. 1988 Jul 15;141(2):598–606. [PubMed] [Google Scholar]
  26. Kägi D., Ledermann B., Bürki K., Hengartner H., Zinkernagel R. M. CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur J Immunol. 1994 Dec;24(12):3068–3072. doi: 10.1002/eji.1830241223. [DOI] [PubMed] [Google Scholar]
  27. Lukacs K., Kurlander R. Lyt-2+ T cell-mediated protection against listeriosis. Protection correlates with phagocyte depletion but not with IFN-gamma production. J Immunol. 1989 Apr 15;142(8):2879–2886. [PubMed] [Google Scholar]
  28. Mitsuyama M., Takeya K., Nomoto K., Shimotori S. Three phases of phagocyte contribution to resistance against Listeria monocytogenes. J Gen Microbiol. 1978 May;106(1):165–171. doi: 10.1099/00221287-106-1-165. [DOI] [PubMed] [Google Scholar]
  29. Miyata M., Mitsuyama M., Ogata N., Nomoto K. Protective mechanisms against infection by Listeria monocytogenes: accumulation and activation of macrophages. J Clin Lab Immunol. 1984 Mar;13(3):111–115. [PubMed] [Google Scholar]
  30. Moskophidis D., Lechner F., Pircher H., Zinkernagel R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 1993 Apr 22;362(6422):758–761. doi: 10.1038/362758a0. [DOI] [PubMed] [Google Scholar]
  31. Munk M. E., Elser C., Kaufmann S. H. Human gamma/delta T-cell response to Listeria monocytogenes protein components in vitro. Immunology. 1996 Feb;87(2):230–235. doi: 10.1046/j.1365-2567.1996.470549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O'Brien R. L., Happ M. P., Dallas A., Palmer E., Kubo R., Born W. K. Stimulation of a major subset of lymphocytes expressing T cell receptor gamma delta by an antigen derived from Mycobacterium tuberculosis. Cell. 1989 May 19;57(4):667–674. doi: 10.1016/0092-8674(89)90135-9. [DOI] [PubMed] [Google Scholar]
  33. Ohga S., Yoshikai Y., Takeda Y., Hiromatsu K., Nomoto K. Sequential appearance of gamma/delta- and alpha/beta-bearing T cells in the peritoneal cavity during an i.p. infection with Listeria monocytogenes. Eur J Immunol. 1990 Mar;20(3):533–538. doi: 10.1002/eji.1830200311. [DOI] [PubMed] [Google Scholar]
  34. Pamer E. G., Harty J. T., Bevan M. J. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature. 1991 Oct 31;353(6347):852–855. doi: 10.1038/353852a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rakhmilevich A. L. Evidence for a significant role of CD4+ T cells in adoptive immunity to Listeria monocytogenes in the liver. Immunology. 1994 Jun;82(2):249–254. [PMC free article] [PubMed] [Google Scholar]
  36. Rogers L. A., Zlotnik A., Lee F., Shortman K. Lymphokine requirements for the development of specific cytotoxic T cells from single precursors. Eur J Immunol. 1991 Apr;21(4):1069–1072. doi: 10.1002/eji.1830210432. [DOI] [PubMed] [Google Scholar]
  37. Sad S., Marcotte R., Mosmann T. R. Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity. 1995 Mar;2(3):271–279. doi: 10.1016/1074-7613(95)90051-9. [DOI] [PubMed] [Google Scholar]
  38. Skeen M. J., Ziegler H. K. Activation of gamma delta T cells for production of IFN-gamma is mediated by bacteria via macrophage-derived cytokines IL-1 and IL-12. J Immunol. 1995 Jun 1;154(11):5832–5841. [PubMed] [Google Scholar]
  39. Song F., Matsuzaki G., Mitsuyama M., Nomoto K. In vitro generation of IFN-gamma-producing Listeria-specific T cells is dependent on IFN-gamma production by non-NK cells. Cell Immunol. 1995 Feb;160(2):211–216. doi: 10.1016/0008-8749(95)80030-m. [DOI] [PubMed] [Google Scholar]
  40. Tanaka Y., Morita C. T., Tanaka Y., Nieves E., Brenner M. B., Bloom B. R. Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature. 1995 May 11;375(6527):155–158. doi: 10.1038/375155a0. [DOI] [PubMed] [Google Scholar]
  41. Vink A., Uyttenhove C., Wauters P., Van Snick J. Accessory factors involved in murine T cell activation. Distinct roles of interleukin 6, interleukin 1 and tumor necrosis factor. Eur J Immunol. 1990 Jan;20(1):1–6. doi: 10.1002/eji.1830200102. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES