Skip to main content
Immunology logoLink to Immunology
. 1998 Nov;95(3):339–345. doi: 10.1046/j.1365-2567.1998.00607.x

Strong intrinsic biases towards mutation and conservation of bases in human IgVH genes during somatic hypermutation prevent statistical analysis of antigen selection.

D K Dunn-Walters 1, J Spencer 1
PMCID: PMC1364398  PMID: 9824495

Abstract

Immunoglobulin V region genes acquire point mutations during affinity maturation of the T-cell-dependent B-cell response. It has been proposed that both selection by antigen and characteristics of the DNA sequence are involved in determining the distribution of mutations along the genes. There is a tendency for replacement mutations to occur in the complementarity-determining regions and for silent mutations to accumulate in the framework regions of used genes. By analysing a group of highly mutated human IgVH4-34 (VH4. 21) and family 5 genes derived from human gut-associated lymphoid tissues, which were out-of-frame between VH and JH (and therefore not used) we have investigated the distribution of mutations acquired in the absence of selection. We observed that these genes may show the statistical hallmarks of selected genes, suggesting that intrinsic biases alone may be enough to give the appearance of selection. These data suggest that analysis of the distribution of mutations in IgVH genes cannot be used reliably to state whether antigenic selection of the B-cell carrying the genes occurred. In-frame genes had more silent mutations than the out-of-frame genes and lacked stop codons. These characteristics were considered to be indicative of selection in the in-frame genes derived from human gut-associated lymphoid tissue.

Full text

PDF
339

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brezinschek H. P., Brezinschek R. I., Lipsky P. E. Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol. 1995 Jul 1;155(1):190–202. [PubMed] [Google Scholar]
  2. Brezinschek H. P., Foster S. J., Brezinschek R. I., Dörner T., Domiati-Saad R., Lipsky P. E. Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(+)/IgM+ and CD5(-)/IgM+ B cells. J Clin Invest. 1997 May 15;99(10):2488–2501. doi: 10.1172/JCI119433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang B., Casali P. The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today. 1994 Aug;15(8):367–373. doi: 10.1016/0167-5699(94)90175-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapman C. J., Mockridge C. I., Hamblin T. J., Stevenson F. K. Tracking of the V4-34 (VH4-21) gene in human tonsil reveals clonal isotype switch events and a highly variable degree of somatic hypermutation. Clin Exp Immunol. 1996 Aug;105(2):360–368. doi: 10.1046/j.1365-2249.1996.d01-769.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Du M., Diss T. C., Xu C., Peng H., Isaacson P. G., Pan L. Ongoing mutation in MALT lymphoma immunoglobulin gene suggests that antigen stimulation plays a role in the clonal expansion. Leukemia. 1996 Jul;10(7):1190–1197. [PubMed] [Google Scholar]
  6. Dunn-Walters D. K., Boursier L., Spencer J. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur J Immunol. 1997 Nov;27(11):2959–2964. doi: 10.1002/eji.1830271131. [DOI] [PubMed] [Google Scholar]
  7. Dunn-Walters D. K., Dogan A., Boursier L., MacDonald C. M., Spencer J. Base-specific sequences that bias somatic hypermutation deduced by analysis of out-of-frame human IgVH genes. J Immunol. 1998 Mar 1;160(5):2360–2364. [PubMed] [Google Scholar]
  8. Dunn-Walters D. K., Isaacson P. G., Spencer J. Sequence analysis of human IgVH genes indicates that ileal lamina propria plasma cells are derived from Peyer's patches. Eur J Immunol. 1997 Feb;27(2):463–467. doi: 10.1002/eji.1830270217. [DOI] [PubMed] [Google Scholar]
  9. Dunn-Walters D. K., Isaacson P. G., Spencer J. Sequence analysis of rearranged IgVH genes from microdissected human Peyer's patch marginal zone B cells. Immunology. 1996 Aug;88(4):618–624. [PMC free article] [PubMed] [Google Scholar]
  10. Dunn-Walters D. K., Isaacson P. G., Spencer J. Sequence analysis of rearranged IgVH genes from microdissected human Peyer's patch marginal zone B cells. Immunology. 1996 Aug;88(4):618–624. [PMC free article] [PubMed] [Google Scholar]
  11. Dörner T., Brezinschek H. P., Brezinschek R. I., Foster S. J., Domiati-Saad R., Lipsky P. E. Analysis of the frequency and pattern of somatic mutations within nonproductively rearranged human variable heavy chain genes. J Immunol. 1997 Mar 15;158(6):2779–2789. [PubMed] [Google Scholar]
  12. Dörner T., Brezinschek H. P., Foster S. J., Brezinschek R. I., Farner N. L., Lipsky P. E. Delineation of selective influences shaping the mutated expressed human Ig heavy chain repertoire. J Immunol. 1998 Mar 15;160(6):2831–2841. [PubMed] [Google Scholar]
  13. Eclache V., Magnac C., Pritsch O., Delecluse H. J., Davi F., Raphaël M., Dighiero G. Complete nucleotide sequence of Ig V genes in three cases of Burkitt lymphoma associated with AIDS. Leuk Lymphoma. 1996 Jan;20(3-4):281–290. doi: 10.3109/10428199609051619. [DOI] [PubMed] [Google Scholar]
  14. Ikematsu H., Harindranath N., Ueki Y., Notkins A. L., Casali P. Clonal analysis of a human antibody response. II. Sequences of the VH genes of human IgM, IgG, and IgA to rabies virus reveal preferential utilization of VHIII segments and somatic hypermutation. J Immunol. 1993 Feb 15;150(4):1325–1337. [PMC free article] [PubMed] [Google Scholar]
  15. Jacob J., Kelsoe G., Rajewsky K., Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991 Dec 5;354(6352):389–392. doi: 10.1038/354389a0. [DOI] [PubMed] [Google Scholar]
  16. Mantovani L., Wilder R. L., Casali P. Human rheumatoid B-1a (CD5+ B) cells make somatically hypermutated high affinity IgM rheumatoid factors. J Immunol. 1993 Jul 1;151(1):473–488. [PMC free article] [PubMed] [Google Scholar]
  17. Qin Y., Greiner A., Trunk M. J., Schmausser B., Ott M. M., Müller-Hermelink H. K. Somatic hypermutation in low-grade mucosa-associated lymphoid tissue-type B-cell lymphoma. Blood. 1995 Nov 1;86(9):3528–3534. [PubMed] [Google Scholar]
  18. Rogozin I. B., Kolchanov N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta. 1992 Nov 15;1171(1):11–18. doi: 10.1016/0167-4781(92)90134-l. [DOI] [PubMed] [Google Scholar]
  19. Schettino E. W., Chai S. K., Kasaian M. T., Schroeder H. W., Jr, Casali P. VHDJH gene sequences and antigen reactivity of monoclonal antibodies produced by human B-1 cells: evidence for somatic selection. J Immunol. 1997 Mar 1;158(5):2477–2489. [PMC free article] [PubMed] [Google Scholar]
  20. Shlomchik M. J., Aucoin A. H., Pisetsky D. S., Weigert M. G. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9150–9154. doi: 10.1073/pnas.84.24.9150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shlomchik M. J., Marshak-Rothstein A., Wolfowicz C. B., Rothstein T. L., Weigert M. G. The role of clonal selection and somatic mutation in autoimmunity. 1987 Aug 27-Sep 2Nature. 328(6133):805–811. doi: 10.1038/328805a0. [DOI] [PubMed] [Google Scholar]
  22. Smith D. S., Creadon G., Jena P. K., Portanova J. P., Kotzin B. L., Wysocki L. J. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J Immunol. 1996 Apr 1;156(7):2642–2652. [PubMed] [Google Scholar]
  23. Snow R. E., Chapman C. J., Frew A. J., Holgate S. T., Stevenson F. K. Pattern of usage and somatic hypermutation in the V(H)5 gene segments of a patient with asthma: implications for IgE. Eur J Immunol. 1997 Jan;27(1):162–170. doi: 10.1002/eji.1830270124. [DOI] [PubMed] [Google Scholar]
  24. Tomlinson I. M., Walter G., Marks J. D., Llewelyn M. B., Winter G. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol. 1992 Oct 5;227(3):776–798. doi: 10.1016/0022-2836(92)90223-7. [DOI] [PubMed] [Google Scholar]
  25. Wagner S. D., Milstein C., Neuberger M. S. Codon bias targets mutation. Nature. 1995 Aug 31;376(6543):732–732. doi: 10.1038/376732a0. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES