Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1993 Dec;36(6):531–538. doi: 10.1111/j.1365-2125.1993.tb00411.x

Influence of CYP2D6-dependent metabolism on the steady-state pharmacokinetics and pharmacodynamics of metoprolol and nicardipine, alone and in combination.

M A Laurent-Kenesi 1, C Funck-Brentano 1, J M Poirier 1, D Decolin 1, P Jaillon 1
PMCID: PMC1364657  PMID: 12959269

Abstract

1 The metabolism of metoprolol depends in part on the genetically determined activity of the CYP2D6 isoenzyme. In vitro studies have shown that nicardipine is a potent inhibitor of CYP2D6 activity. Since the combination of metoprolol and nicardipine is likely to be used for the treatment of hypertension, we examined the interaction between these two drugs at steady-state. 2 Fourteen healthy volunteers, seven extensive and seven poor metabolisers of dextromethorphan were studied in a double-blind, randomised cross-over four-period protocol. Subjects received nicardipine 50 mg every 12 h, metoprolol 100 mg every 12 h, a combination of both drugs and placebo during 5.5 days. Steady-state pharmacokinetics of nicardipine and metoprolol were analyzed. Beta-adrenoceptor blockade was assessed as the reduction of exercise-induced tachycardia. 3 During treatment with metoprolol, alone or in combination with nicardipine, its steady-state plasma concentrations were higher in subjects of the poor metaboliser phenotype than in extensive metabolisers. Beta-adrenoceptor blockade was also more pronounced in poor metabolisers than in extensive metabolisers of dextromethorphan during treatment with metoprolol alone or in combination with nicardipine (24.0 +/- 2.4% vs 17.1 +/- 3.5% and 24.1 +/- 2.5% vs 15.4 +/- 2.7% reduction in exercise trachycardia, respectively, P < 0.01 in each case). 4 Nicardipine produced a small increase in plasma metoprolol concentration in extensive metabolisers from 35.9 +/- 16.6 to 45.8 +/- 15.4 ng ml(-1) (P < 0.02), but had no significant effect in poor metabolisers. However, nicardipine did not alter the R/S metoprolol ratio in plasma 3 h after dosing, the plasma concentration of S-(-)-metoprolol 3 h after dosing or the beta-adrenoceptor blockade produced by metoprolol in subjects of both phenotypes. The partial metabolic clearance of metoprolol to alpha-hydroxy-metoprolol was not altered significantly in extensive metabolisers. Plasma nicardipine concentration and beta-adrenoceptor blocking effects did not differ between the phenotypes and were not influenced by metoprolol. We conclude that beta-adrenoceptor blockade during repeated dosing with metoprolol is more pronounced in poor than in extensive metaboliser subjects, that nicardipine decreases a CYP2D6-independent route of metoprolol elimination but does not increase beta-adrenoceptor blockade during repeated dosing with metoprolol.

Full text

PDF
531

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balmér K., Persson A., Lagerström P. O., Persson B. A., Schill G. Liquid chromatographic separation of the enantiomers of metoprolol and its alpha-hydroxy metabolite on Chiralcel OD for determination in plasma and urine. J Chromatogr. 1991 Aug 16;553(1-2):391–397. doi: 10.1016/s0021-9673(01)88509-5. [DOI] [PubMed] [Google Scholar]
  2. Balmér K., Zhang Y. Y., Lagerström P. O., Persson B. A. Determination of metoprolol and two major metabolites in plasma and urine by column liquid chromatography and fluorometric detection. J Chromatogr. 1987 Jul 3;417(2):357–365. doi: 10.1016/0378-4347(87)80129-9. [DOI] [PubMed] [Google Scholar]
  3. Brøsen K., Gram L. F. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol. 1989;36(6):537–547. doi: 10.1007/BF00637732. [DOI] [PubMed] [Google Scholar]
  4. Caporaso N. E., Shaw G. L. Clinical implications of the competitive inhibition of the debrisoquin-metabolizing isozyme by quinidine. Arch Intern Med. 1991 Oct;151(10):1985–1992. [PubMed] [Google Scholar]
  5. Chiou W. L. Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level--time curve. J Pharmacokinet Biopharm. 1978 Dec;6(6):539–546. doi: 10.1007/BF01062108. [DOI] [PubMed] [Google Scholar]
  6. Eichelbaum M., Gross A. S. The genetic polymorphism of debrisoquine/sparteine metabolism--clinical aspects. Pharmacol Ther. 1990;46(3):377–394. doi: 10.1016/0163-7258(90)90025-w. [DOI] [PubMed] [Google Scholar]
  7. Fonne-Pfister R., Meyer U. A. Xenobiotic and endobiotic inhibitors of cytochrome P-450dbl function, the target of the debrisoquine/sparteine type polymorphism. Biochem Pharmacol. 1988 Oct 15;37(20):3829–3835. doi: 10.1016/0006-2952(88)90063-9. [DOI] [PubMed] [Google Scholar]
  8. Freestone S., Silas J. H., Lennard M. S., Ramsay L. E. Comparison of two long-acting preparations of metoprolol with conventional metoprolol and atenolol in healthy men during chronic dosing. Br J Clin Pharmacol. 1982 Nov;14(5):713–718. doi: 10.1111/j.1365-2125.1982.tb04962.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Funck-Brentano C., Kroemer H. K., Pavlou H., Woosley R. L., Roden D. M. Genetically-determined interaction between propafenone and low dose quinidine: role of active metabolites in modulating net drug effect. Br J Clin Pharmacol. 1989 Apr;27(4):435–444. doi: 10.1111/j.1365-2125.1989.tb05391.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Funck-Brentano C., Thomas G., Jacqz-Aigrain E., Poirier J. M., Simon T., Béréziat G., Jaillon P. Polymorphism of dextromethorphan metabolism: relationships between phenotype, genotype and response to the administration of encainide in humans. J Pharmacol Exp Ther. 1992 Nov;263(2):780–786. [PubMed] [Google Scholar]
  11. Funck-Brentano C., Turgeon J., Woosley R. L., Roden D. M. Effect of low dose quinidine on encainide pharmacokinetics and pharmacodynamics. Influence of genetic polymorphism. J Pharmacol Exp Ther. 1989 Apr;249(1):134–142. [PubMed] [Google Scholar]
  12. Jacqz-Aigrain E., Menard Y., Popon M., Mathieu H. Dextromethorphan phenotypes determined by high-performance liquid chromatography and fluorescence detection. J Chromatogr. 1989 Oct 27;495:361–363. doi: 10.1016/s0378-4347(00)82647-x. [DOI] [PubMed] [Google Scholar]
  13. Küpfer A., Schmid B., Pfaff G. Pharmacogenetics of dextromethorphan O-demethylation in man. Xenobiotica. 1986 May;16(5):421–433. doi: 10.3109/00498258609050249. [DOI] [PubMed] [Google Scholar]
  14. Küpfer A., Schmid B., Preisig R., Pfaff G. Dextromethorphan as a safe probe for debrisoquine hydroxylation polymorphism. Lancet. 1984 Sep 1;2(8401):517–518. doi: 10.1016/s0140-6736(84)92591-1. [DOI] [PubMed] [Google Scholar]
  15. Leemann T., Dayer P., Meyer U. A. Single-dose quinidine treatment inhibits metoprolol oxidation in extensive metabolizers. Eur J Clin Pharmacol. 1986;29(6):739–741. doi: 10.1007/BF00615971. [DOI] [PubMed] [Google Scholar]
  16. Lennard M. S., Silas J. H., Freestone S., Ramsay L. E., Tucker G. T., Woods H. F. Oxidation phenotype--a major determinant of metoprolol metabolism and response. N Engl J Med. 1982 Dec 16;307(25):1558–1560. doi: 10.1056/NEJM198212163072505. [DOI] [PubMed] [Google Scholar]
  17. Lennard M. S. The polymorphic oxidation of beta-adrenoceptor antagonists. Pharmacol Ther. 1989;41(3):461–477. doi: 10.1016/0163-7258(89)90126-5. [DOI] [PubMed] [Google Scholar]
  18. Lennard M. S., Tucker G. T., Silas J. H., Freestone S., Ramsay L. E., Woods H. F. Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clin Pharmacol Ther. 1983 Dec;34(6):732–737. doi: 10.1038/clpt.1983.242. [DOI] [PubMed] [Google Scholar]
  19. Lewis R. V., Ramsay L. E., Jackson P. R., Yeo W. W., Lennard M. S., Tucker G. T. Influence of debrisoquine oxidation phenotype on exercise tolerance and subjective fatigue after metoprolol and atenolol in healthy subjects. Br J Clin Pharmacol. 1991 Apr;31(4):391–398. doi: 10.1111/j.1365-2125.1991.tb05551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Motulsky H. J., Ransnas L. A. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987 Nov;1(5):365–374. [PubMed] [Google Scholar]
  21. Murthy S. S., Shetty H. U., Nelson W. L., Jackson P. R., Lennard M. S. Enantioselective and diastereoselective aspects of the oxidative metabolism of metoprolol. Biochem Pharmacol. 1990 Oct 1;40(7):1637–1644. doi: 10.1016/0006-2952(90)90466-x. [DOI] [PubMed] [Google Scholar]
  22. Otton S. V., Inaba T., Kalow W. Competitive inhibition of sparteine oxidation in human liver by beta-adrenoceptor antagonists and other cardiovascular drugs. Life Sci. 1984 Jan 2;34(1):73–80. doi: 10.1016/0024-3205(84)90332-1. [DOI] [PubMed] [Google Scholar]
  23. Schellens J. H., Soons P. A., van der Wart J. H., Hoevers J. W., Breimer D. D. Lack of pharmacokinetic interaction between nifedipine, sparteine and phenytoin in man. Br J Clin Pharmacol. 1991 Feb;31(2):175–178. doi: 10.1111/j.1365-2125.1991.tb05508.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schoors D. F., Vercruysse I., Musch G., Massart D. L., Dupont A. G. Influence of nicardipine on the pharmacokinetics and pharmacodynamics of propranolol in healthy volunteers. Br J Clin Pharmacol. 1990 May;29(5):497–501. doi: 10.1111/j.1365-2125.1990.tb03671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Siddoway L. A., Thompson K. A., McAllister C. B., Wang T., Wilkinson G. R., Roden D. M., Woosley R. L. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation. 1987 Apr;75(4):785–791. doi: 10.1161/01.cir.75.4.785. [DOI] [PubMed] [Google Scholar]
  26. Silke B., Verma S. P., Frais M. A., Reynolds G., Jackson N., Taylor S. H. Haemodynamic analysis of the effects of nicardipine and metoprolol alone and in combination in coronary artery disease. Eur Heart J. 1985 Nov;6(11):930–938. doi: 10.1093/oxfordjournals.eurheartj.a061790. [DOI] [PubMed] [Google Scholar]
  27. Turgeon J., Pavlou H. N., Wong W., Funck-Brentano C., Roden D. M. Genetically determined steady-state interaction between encainide and quinidine in patients with arrhythmias. J Pharmacol Exp Ther. 1990 Nov;255(2):642–649. [PubMed] [Google Scholar]
  28. Walle T., Walle U. K., Olanoff L. S., Conradi E. C. Partial metabolic clearances as determinants of the oral bioavailability of propranolol. Br J Clin Pharmacol. 1986 Sep;22(3):317–323. doi: 10.1111/j.1365-2125.1986.tb02893.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES