Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1993 Oct;36(4):303–307. doi: 10.1111/j.1365-2125.1993.tb00368.x

Inhibition of prostaglandin synthesis does not affect contractile responses to noradrenaline, serotonin, angiotensin II nor endothelin-1 in human forearm isolated veins.

J P Chin 1, R M Hurlston 1, A M Dart 1
PMCID: PMC1364682  PMID: 12959307

Abstract

1. The functional role of endogenous cyclo-oxygenase products was examined in the human forearm isolated vein. 2. Six healthy normal adult males (age > 18 years old) were recruited. Forearm veins were biopsied and ring segments mounted in standard organ baths for recording of isometric force. 3. Noradrenaline (-log molar EC50: 7.75 +/- 0.19; -log molar threshold concentration: 8.80 +/- 0.20), 5-hydroxytryptamine (-log molar EC50: 7.52 +/- 0.17; -log molar threshold concentration: 9.50 +/- 0.64), angiotensin II (-log molar threshold concentration: 9.00 +/- 0.28) and endothelin-1 (-log molar threshold concentration: 9.13 +/- 0.47) were equipotent in this preparation. Indomethacin (10 microM) had no effect on either the threshold concentration or EC50 of noradrenaline, 5-hydroxytryptamine nor the threshold concentration of angiotensin II nor endothelin-1. 4. Sodium nitroprusside (1 nM-10 microM) relaxed noradrenaline-precontracted preparations. Evidence of minimal endothelial influence was confirmed by the lack of relaxant response to acetylcholine (1 nM-10 microM). Histology using silver staining confirmed that endothelial cells were absent over greater than 90% of the lumen surface. 5. We conclude that endogenous prostanoids derived from smooth muscle cells, either released basally or agonist-stimulated, do not play a role in the regulation of vascular tone in the human forearm isolated vein.

Full text

PDF
303

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ager A., Gordon J. L., Moncada S., Pearson J. D., Salmon J. A., Trevethick M. A. Effects of isolation and culture on prostaglandin synthesis by porcine aortic endothelial and smooth muscle cells. J Cell Physiol. 1982 Jan;110(1):9–16. doi: 10.1002/jcp.1041100103. [DOI] [PubMed] [Google Scholar]
  2. Arner M., Högestätt E. D. Endothelium-dependent relaxation and effects of prostacyclin, endothelin and platelet-activating factor in human hand veins and arteries. Acta Physiol Scand. 1991 Jun;142(2):165–172. doi: 10.1111/j.1748-1716.1991.tb09144.x. [DOI] [PubMed] [Google Scholar]
  3. Baenziger N. L., Becherer P. R., Majerus P. W. Characterization of prostacyclin synthesis in cultured human arterial smooth muscle cells, venous endothelial cells and skin fibroblasts. Cell. 1979 Apr;16(4):967–974. doi: 10.1016/0092-8674(79)90111-9. [DOI] [PubMed] [Google Scholar]
  4. Berti F., Rossoni G., Biasi G., Buschi A., Mandelli V., Tondo C. Defibrotide, by enhancing prostacyclin generation, prevents endothelin-1 induced contraction in human saphenous veins. Prostaglandins. 1990 Oct;40(4):337–350. doi: 10.1016/0090-6980(90)90099-h. [DOI] [PubMed] [Google Scholar]
  5. Demolle D., Van Coevorden A., Boeynaems J. M. Stimulation of aortic smooth muscle prostacyclin by serotonin: role of distinct receptors in contractile and synthetic states. Circ Res. 1989 Apr;64(4):806–813. doi: 10.1161/01.res.64.4.806. [DOI] [PubMed] [Google Scholar]
  6. Eglen R. M., Michel A. D., Sharif N. A., Swank S. R., Whiting R. L. The pharmacological properties of the peptide, endothelin. Br J Pharmacol. 1989 Aug;97(4):1297–1307. doi: 10.1111/j.1476-5381.1989.tb12592.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  8. Larrue J., Rigaud M., Daret D., Demond J., Durand J., Bricaud H. Prostacyclin production by cultured smooth muscle cells from atherosclerotic rabbit aorta. Nature. 1980 Jun 12;285(5765):480–482. doi: 10.1038/285480a0. [DOI] [PubMed] [Google Scholar]
  9. Malomvölgyi B., Hadházy P., Magyar K. Relaxation by prostacyclin (PGI2) of human, dog and rabbit femoral artery strips. Interspecies difference. Biomed Biochim Acta. 1988;47(10-11):S125–S128. [PubMed] [Google Scholar]
  10. Moncada S., Herman A. G., Higgs E. A., Vane J. R. Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res. 1977 Sep;11(3):323–344. doi: 10.1016/0049-3848(77)90185-2. [DOI] [PubMed] [Google Scholar]
  11. Nakashima A., Angus J. A., Johnston C. I. Comparison of angiotensin converting enzyme inhibitors captopril and MK421-diacid in guinea pig atria. Eur J Pharmacol. 1982 Jul 16;81(3):487–492. doi: 10.1016/0014-2999(82)90114-5. [DOI] [PubMed] [Google Scholar]
  12. Nebigil C., Malik K. U. Prostaglandin synthesis elicited by adrenergic stimuli is mediated via alpha-2C and alpha-1A adrenergic receptors in cultured smooth muscle cells of rabbit aorta. J Pharmacol Exp Ther. 1992 Feb;260(2):849–858. [PubMed] [Google Scholar]
  13. Sayers R. D., Watt P. A., Muller S., Bell P. R., Thurston H. Endothelial cell injury secondary to surgical preparation of reversed and in situ saphenous vein bypass grafts. Eur J Vasc Surg. 1992 Jul;6(4):354–361. doi: 10.1016/s0950-821x(05)80279-8. [DOI] [PubMed] [Google Scholar]
  14. Skidgel R. A., Printz M. P. PGI2 production by rat blood vessels: diminished prostacyclin formation in veins compared to arteries. Prostaglandins. 1978 Jul;16(1):1–16. doi: 10.1016/0090-6980(78)90196-x. [DOI] [PubMed] [Google Scholar]
  15. Smith W. L. Prostaglandin biosynthesis and its compartmentation in vascular smooth muscle and endothelial cells. Annu Rev Physiol. 1986;48:251–262. doi: 10.1146/annurev.ph.48.030186.001343. [DOI] [PubMed] [Google Scholar]
  16. Sudhir K., Angus J. A., Esler M. D., Jennings G. L., Lambert G. W., Korner P. I. Altered venous responses to vasoconstrictor agonists and nerve stimulation in human primary hypertension. J Hypertens. 1990 Dec;8(12):1119–1128. doi: 10.1097/00004872-199012000-00008. [DOI] [PubMed] [Google Scholar]
  17. Takeuchi K., Abe K., Maeyama K., Sato M., Yasujima M., Watanabe T., Yoshinaga K. Simultaneous measurements of cytosolic free calcium level and prostaglandin synthesis reveal a correlation between them in perfused monolayer of cultured rat vascular smooth muscle cells: effects of bradykinin and angiotensin II. Tohoku J Exp Med. 1991 Nov;165(3):183–192. doi: 10.1620/tjem.165.183. [DOI] [PubMed] [Google Scholar]
  18. Vallotton M. B., Gerber-Wicht C., Dolci W., Wüthrich R. P. Interaction of vasopressin and angiotensin II in stimulation of prostacyclin synthesis in vascular smooth muscle cells. Am J Physiol. 1989 Nov;257(5 Pt 1):E617–E624. doi: 10.1152/ajpendo.1989.257.5.E617. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES