Abstract
Therapeutic drug monitoring data for nortriptyline (674 analyses from 578 patients) were evaluated with the nonparametric maximum likelihood (NPML) method in order to determine the population kinetic parameters of this drug and their relation to age, body weight and duration of treatment. Clearance of nortriptyline during monotherapy exhibited a large interindividual variability and a skewed distribution. A small, separate fraction with a very high clearance, constituting between 0.5% and 2% of the population, was seen in both men and women. This may be explained by the recent discovery of subjects with multiple copies of the gene encoding the cytochrome-P450-enzyme CYP2D6, which catalyses the hydroxylation of nortriptyline. However, erratic compliance with the prescription may also add to this finding. A separate distribution of low clearance values with a frequency corresponding to that of poor metabolizers of CYP2D6 (circa 7% in Caucasian populations) could not be detected. Concomitant therapy with drugs that inhibit CYP2D6 resulted in a major increase in the plasma nortriptyline concentrations. This was caused by a decrease in nortriptyline clearance, whereas the volume of distribution was unchanged. The demographic factors age and body weight had a minor influence on the clearance of nortriptyline which was also unaffected by the duration of treatment.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexanderson B., Evans D. A., Sjöqvist F. Steady-state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy. Br Med J. 1969 Dec 27;4(5686):764–768. doi: 10.1136/bmj.4.5686.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alexanderson B. Pharmacokinetics of nortriptyline in man after single and multiple oral doses: the predictability of steady-state plasma concentrations from single-dose plasma-level data. Eur J Clin Pharmacol. 1972 Mar;4(2):82–91. doi: 10.1007/BF00562502. [DOI] [PubMed] [Google Scholar]
- Alexanderson B. Prediction of steady-state plasma levels of nortriptyline from single oral dose kinetics: a study in twins. Eur J Clin Pharmacol. 1973 Jun;6(1):44–53. doi: 10.1007/BF00561800. [DOI] [PubMed] [Google Scholar]
- Alvan G. Individual differences in the disposition of drugs metabolised in the body. Clin Pharmacokinet. 1978 Mar-Apr;3(2):155–175. doi: 10.2165/00003088-197803020-00005. [DOI] [PubMed] [Google Scholar]
- Alván G., Borga O., Lind M., Palmér L., Siwers B. First pass hydroxylation of nortriptyline: concentrations of parent drug and major metabolites in plasma. Eur J Clin Pharmacol. 1977 Mar 11;11(3):219–224. doi: 10.1007/BF00606414. [DOI] [PubMed] [Google Scholar]
- Asberg M., Crönholm B., Sjöqvist F., Tuck D. Relationship between plasma level and therapeutic effect of nortriptyline. Br Med J. 1971 Aug 7;3(5770):331–334. doi: 10.1136/bmj.3.5770.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertilsson L., Aberg-Wistedt A., Gustafsson L. L., Nordin C. Extremely rapid hydroxylation of debrisoquine: a case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther Drug Monit. 1985;7(4):478–480. [PubMed] [Google Scholar]
- Bertilsson L., Dahl M. L., Sjöqvist F., Aberg-Wistedt A., Humble M., Johansson I., Lundqvist E., Ingelman-Sundberg M. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet. 1993 Jan 2;341(8836):63–63. doi: 10.1016/0140-6736(93)92546-6. [DOI] [PubMed] [Google Scholar]
- Bertilsson L., Eichelbaum M., Mellström B., Säwe J., Schulz H. U., Sjöqvist F. Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sci. 1980 Nov 3;27(18):1673–1677. doi: 10.1016/0024-3205(80)90642-6. [DOI] [PubMed] [Google Scholar]
- Bertilsson L., Lou Y. Q., Du Y. L., Liu Y., Kuang T. Y., Liao X. M., Wang K. Y., Reviriego J., Iselius L., Sjöqvist F. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin Pharmacol Ther. 1992 Apr;51(4):388–397. doi: 10.1038/clpt.1992.38. [DOI] [PubMed] [Google Scholar]
- Bertilsson L., Mellström B., Sjökvist F., Mårtenson B., Asberg M. Slow hydroxylation of nortriptyline and concomitant poor debrisoquine hydroxylation: clinical implications. Lancet. 1981 Mar 7;1(8219):560–561. doi: 10.1016/s0140-6736(81)92894-4. [DOI] [PubMed] [Google Scholar]
- Dahl-Puustinen M. L., Lidén A., Alm C., Nordin C., Bertilsson L. Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther. 1989 Jul;46(1):78–81. doi: 10.1038/clpt.1989.109. [DOI] [PubMed] [Google Scholar]
- Dahl M. L., Bertilsson L. Genetically variable metabolism of antidepressants and neuroleptic drugs in man. Pharmacogenetics. 1993 Apr;3(2):61–70. doi: 10.1097/00008571-199304000-00001. [DOI] [PubMed] [Google Scholar]
- Dahl M. L., Ekqvist B., Widén J., Bertilsson L. Disposition of the neuroleptic zuclopenthixol cosegregates with the polymorphic hydroxylation of debrisoquine in humans. Acta Psychiatr Scand. 1991 Jul;84(1):99–102. doi: 10.1111/j.1600-0447.1991.tb01428.x. [DOI] [PubMed] [Google Scholar]
- Dahl M. L., Johansson I., Palmertz M. P., Ingelman-Sundberg M., Sjöqvist F. Analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylation in a Swedish population. Clin Pharmacol Ther. 1992 Jan;51(1):12–17. doi: 10.1038/clpt.1992.2. [DOI] [PubMed] [Google Scholar]
- Dawling S., Crome P., Braithwaite R. Pharmacokinetics of single oral doses of nortriptyline in depressed elderly hospital patients and young healthy volunteers. Clin Pharmacokinet. 1980 Jul-Aug;5(4):394–401. doi: 10.2165/00003088-198005040-00007. [DOI] [PubMed] [Google Scholar]
- Gram L. F., Debruyne D., Caillard V., Boulenger J. P., Lacotte J., Moulin M., Zarifian E. Substantial rise in sparteine metabolic ratio during haloperidol treatment. Br J Clin Pharmacol. 1989 Feb;27(2):272–275. doi: 10.1111/j.1365-2125.1989.tb05362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gram L. F., Overo K. F. Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man. Br Med J. 1972 Feb 19;1(5798):463–465. doi: 10.1136/bmj.1.5798.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gram L. F., Overo K., Kirk L. Influence of neuroleptics and benzodiazepines on metabolism of tricyclic antidepressants in man. Am J Psychiatry. 1974 Aug;131(8):863–866. doi: 10.1176/ajp.131.8.863. [DOI] [PubMed] [Google Scholar]
- Inaba T., Jurima M., Mahon W. A., Kalow W. In vitro inhibition studies of two isozymes of human liver cytochrome P-450. Mephenytoin p-hydroxylase and sparteine monooxygenase. Drug Metab Dispos. 1985 Jul-Aug;13(4):443–448. [PubMed] [Google Scholar]
- Jerling M., Alván G. Nonlinear kinetics of nortriptyline in relation to nortriptyline clearance as observed during therapeutic drug monitoring. Eur J Clin Pharmacol. 1994;46(1):67–70. doi: 10.1007/BF00195918. [DOI] [PubMed] [Google Scholar]
- Jerling M., Bertilsson L., Sjöqvist F. The use of therapeutic drug monitoring data to document kinetic drug interactions: an example with amitriptyline and nortriptyline. Ther Drug Monit. 1994 Feb;16(1):1–12. doi: 10.1097/00007691-199402000-00001. [DOI] [PubMed] [Google Scholar]
- Kanba S., Matsumoto K., Nibuya M., Suzuki E., Kinoshita N., Shintani F., Yagi G. Nortriptyline response in elderly depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 1992 May;16(3):301–309. doi: 10.1016/0278-5846(92)90081-o. [DOI] [PubMed] [Google Scholar]
- Karlsson M. O., Sheiner L. B. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm. 1993 Dec;21(6):735–750. doi: 10.1007/BF01113502. [DOI] [PubMed] [Google Scholar]
- Katz I. R., Simpson G. M., Jethanandani V., Cooper T., Muhly C. Steady state pharmacokinetics of nortriptyline in the frail elderly. Neuropsychopharmacology. 1989 Sep;2(3):229–236. doi: 10.1016/0893-133x(89)90026-2. [DOI] [PubMed] [Google Scholar]
- Kragh-Sorensen P., Hansen C. E., Baastrup P. C., Hvidberg E. F. Self-inhibiting action of nortriptylin's antidepressive effect at high plasma levels: a randomized double-blind study controlled by plasma concentrations in patients with endogenous depression. Psychopharmacologia. 1976 Feb 2;45(3):305–312. doi: 10.1007/BF00421145. [DOI] [PubMed] [Google Scholar]
- Kragh-Sørensen P., Asberg M., Eggert-Hansen C. Plasma-nortriptyline levels in endogenous depression. Lancet. 1973 Jan 20;1(7795):113–115. doi: 10.1016/s0140-6736(73)90192-x. [DOI] [PubMed] [Google Scholar]
- Kragh-Sørensen P., Larsen N. E. Factors influencing nortriptyline steady-state kinetics: plasma and saliva levels. Clin Pharmacol Ther. 1980 Dec;28(6):796–803. doi: 10.1038/clpt.1980.237. [DOI] [PubMed] [Google Scholar]
- Kumar V., Smith R. C., Reed K., Leelavathi D. E. Plasma levels and effects of nortriptyline in geriatric depressed patients. Acta Psychiatr Scand. 1987 Jan;75(1):20–28. doi: 10.1111/j.1600-0447.1987.tb02746.x. [DOI] [PubMed] [Google Scholar]
- Levy G. A pharmacokinetic perspective on medicament noncompliance. Clin Pharmacol Ther. 1993 Sep;54(3):242–244. doi: 10.1038/clpt.1993.143. [DOI] [PubMed] [Google Scholar]
- Llerena A., Alm C., Dahl M. L., Ekqvist B., Bertilsson L. Haloperidol disposition is dependent on debrisoquine hydroxylation phenotype. Ther Drug Monit. 1992 Apr;14(2):92–97. doi: 10.1097/00007691-199204000-00003. [DOI] [PubMed] [Google Scholar]
- Overo K. F., Gram L. F., Hansen V. Kinetics of nortriptyline in man according to a two compartment model. Eur J Clin Pharmacol. 1975 Jun 13;8(5):343–347. doi: 10.1007/BF00562660. [DOI] [PubMed] [Google Scholar]
- Sanz E. J., Bertilsson L. d-Propoxyphene is a potent inhibitor of debrisoquine, but not S-mephenytoin 4-hydroxylation in vivo. Ther Drug Monit. 1990 May;12(3):297–299. doi: 10.1097/00007691-199005000-00016. [DOI] [PubMed] [Google Scholar]
- Smith R. C., Reed K., Leelavathi D. E. Pharmacokinetics and the effects of nortriptyline in geriatric depressed patients. Psychopharmacol Bull. 1980 Jul;16(3):54–57. [PubMed] [Google Scholar]
- Spina E., Martines C., Caputi A. P., Cobaleda J., Piñas B., Carrillo J. A., Benitez J. Debrisoquine oxidation phenotype during neuroleptic monotherapy. Eur J Clin Pharmacol. 1991;41(5):467–470. doi: 10.1007/BF00626371. [DOI] [PubMed] [Google Scholar]
- Steiner E., Bertilsson L., Säwe J., Bertling I., Sjöqvist F. Polymorphic debrisoquin hydroxylation in 757 Swedish subjects. Clin Pharmacol Ther. 1988 Oct;44(4):431–435. doi: 10.1038/clpt.1988.176. [DOI] [PubMed] [Google Scholar]
- Syvälahti E. K., Lindberg R., Kallio J., De Vocht M. Inhibitory effects of neuroleptics on debrisoquine oxidation in man. Br J Clin Pharmacol. 1986 Jul;22(1):89–92. [PMC free article] [PubMed] [Google Scholar]
- Turbott J., Norman T. R., Burrows G. D., Maguire K. P., Davies B. M. Pharmacokinetics of nortriptyline in elderly volunteers. Commun Psychopharmacol. 1980;4(3):225–231. [PubMed] [Google Scholar]
- Woolhouse N. M., Adjepon-Yamoah K. K., Mellström B., Hedman A., Bertilsson L., Sjöqvist F. Nortriptyline and debrisoquine hydroxylations in Ghanaian and Swedish subjects. Clin Pharmacol Ther. 1984 Sep;36(3):374–378. doi: 10.1038/clpt.1984.190. [DOI] [PubMed] [Google Scholar]
- Yue Q. Y., Svensson J. O., Alm C., Sjöqvist F., Säwe J. Codeine O-demethylation co-segregates with polymorphic debrisoquine hydroxylation. Br J Clin Pharmacol. 1989 Dec;28(6):639–645. doi: 10.1111/j.1365-2125.1989.tb03556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziegler V. E., Clayton P. J., Taylor J. R., Tee B., Biggs J. T. Nortriptyline plasma levels and therapeutic response. Clin Pharmacol Ther. 1976 Oct;20(4):458–463. doi: 10.1002/cpt1976204458. [DOI] [PubMed] [Google Scholar]
- von Bahr C., Movin G., Nordin C., Lidén A., Hammarlund-Udenaes M., Hedberg A., Ring H., Sjöqvist F. Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther. 1991 Mar;49(3):234–240. doi: 10.1038/clpt.1991.22. [DOI] [PubMed] [Google Scholar]