Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1994 May;37(5):405–412. doi: 10.1111/j.1365-2125.1994.tb05706.x

Biotransformation of caffeine in human liver microsomes from foetuses, neonates, infants and adults.

C Cazeneuve 1, G Pons 1, E Rey 1, J M Treluyer 1, T Cresteil 1, G Thiroux 1, P D'Athis 1, G Olive 1
PMCID: PMC1364894  PMID: 8054245

Abstract

1. Caffeine metabolism was studied in human liver microsomes from foetuses (n = 10), neonates (n = 10), infants (n = 9) and adults (n = 5). Caffeine and its metabolites, 1-3-7-trimethyluric acid, paraxanthine, theophylline and theobromine, were assayed by h.p.l.c. Methoxyresorufin-O-demethylase activity (MEROD) was determined and immunoquantifiable levels of CYP1A2 were measured. 2. The formation of the dimethylxanthines by N-3, N-7 or N-1-demethylation was significantly less in foetuses, neonates and infants than in adults, as shown previously in vivo. The formation of 1-3-7-trimethyluric acid (C-8-hydroxylation) was not significantly different between age groups. The production of total dimethylxanthines, paraxanthine and theophylline increased significantly with age within the neonate-infant group over at least the 0-300 day range (rs = 0.739, 0.667, 0.682, respectively). These data differ from those reported in vivo which suggested that N-3 and N-7-demethylations matured at about 120 days. The difference in maturational profiles of each metabolic pathway suggests that the reactions depend on different isoenzymes. The delay in the maturation of N-1 compared with N-3 and N-7-demethylation is in agreement with previous in vivo data. 3. In the neonate-infant group, only N-3-demethylation correlated with both MEROD activity (rs = 0.681; P < 0.05) and CYP1A2 microsomal concentration (rs = 0.454; P approximately 0.05), suggesting that, as in adults, this reaction depends on CYP1A2. 4. In the foetal samples, the production of total dimethylxanthines, paraxanthine and theobromine decreased significantly (rs = -0.879, -0.767, -0.708, respectively) with increasing gestational age.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
405

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berthou F., Flinois J. P., Ratanasavanh D., Beaune P., Riche C., Guillouzo A. Evidence for the involvement of several cytochromes P-450 in the first steps of caffeine metabolism by human liver microsomes. Drug Metab Dispos. 1991 May-Jun;19(3):561–567. [PubMed] [Google Scholar]
  2. Berthou F., Ratanasavanh D., Alix D., Carlhant D., Riche C., Guillouzo A. Caffeine and theophylline metabolism in newborn and adult human hepatocytes; comparison with adult rat hepatocytes. Biochem Pharmacol. 1988 Oct 1;37(19):3691–3700. doi: 10.1016/0006-2952(88)90402-9. [DOI] [PubMed] [Google Scholar]
  3. Berthou F., Ratanasavanh D., Riche C., Picart D., Voirin T., Guillouzo A. Comparison of caffeine metabolism by slices, microsomes and hepatocyte cultures from adult human liver. Xenobiotica. 1989 Apr;19(4):401–417. doi: 10.3109/00498258909042282. [DOI] [PubMed] [Google Scholar]
  4. Butler M. A., Iwasaki M., Guengerich F. P., Kadlubar F. F. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7696–7700. doi: 10.1073/pnas.86.20.7696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell M. E., Grant D. M., Inaba T., Kalow W. Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes. Drug Metab Dispos. 1987 Mar-Apr;15(2):237–249. [PubMed] [Google Scholar]
  6. Carrier O., Pons G., Rey E., Richard M. O., Moran C., Badoual J., Olive G. Maturation of caffeine metabolic pathways in infancy. Clin Pharmacol Ther. 1988 Aug;44(2):145–151. doi: 10.1038/clpt.1988.129. [DOI] [PubMed] [Google Scholar]
  7. Cresteil T., Beaune P., Kremers P., Celier C., Guengerich F. P., Leroux J. P. Immunoquantification of epoxide hydrolase and cytochrome P-450 isozymes in fetal and adult human liver microsomes. Eur J Biochem. 1985 Sep 2;151(2):345–350. doi: 10.1111/j.1432-1033.1985.tb09107.x. [DOI] [PubMed] [Google Scholar]
  8. Grant D. M., Campbell M. E., Tang B. K., Kalow W. Biotransformation of caffeine by microsomes from human liver. Kinetics and inhibition studies. Biochem Pharmacol. 1987 Apr 15;36(8):1251–1260. doi: 10.1016/0006-2952(87)90078-5. [DOI] [PubMed] [Google Scholar]
  9. Grant D. M., Tang B. K., Kalow W. Variability in caffeine metabolism. Clin Pharmacol Ther. 1983 May;33(5):591–602. doi: 10.1038/clpt.1983.80. [DOI] [PubMed] [Google Scholar]
  10. Kalow W. Variability of caffeine metabolism in humans. Arzneimittelforschung. 1985;35(1A):319–324. [PubMed] [Google Scholar]
  11. Kitada M., Kamataki T., Itahashi K., Rikihisa T., Kanakubo Y. Significance of cytochrome P-450 (P-450 HFLa) of human fetal livers in the steroid and drug oxidations. Biochem Pharmacol. 1987 Feb 15;36(4):453–456. doi: 10.1016/0006-2952(87)90350-9. [DOI] [PubMed] [Google Scholar]
  12. Kitada M., Kamataki T., Itahashi K., Rikihisa T., Kato R., Kanakubo Y. Purification and properties of cytochrome P-450 from homogenates of human fetal livers. Arch Biochem Biophys. 1985 Aug 15;241(1):275–280. doi: 10.1016/0003-9861(85)90383-2. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Ladona M. G., Park S. S., Gelboin H. V., Hammar L., Rane A. Monoclonal antibody directed detection of cytochrome P-450 (PCN) in human fetal liver. Biochem Pharmacol. 1988 Dec 15;37(24):4735–4741. doi: 10.1016/0006-2952(88)90345-0. [DOI] [PubMed] [Google Scholar]
  15. Namkung M. J., Yang H. L., Hulla J. E., Juchau M. R. On the substrate specificity of cytochrome P450IIIA1. Mol Pharmacol. 1988 Nov;34(5):628–637. [PubMed] [Google Scholar]
  16. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  17. Pons G., Blais J. C., Rey E., Plissonnier M., Richard M. O., Carrier O., d'Athis P., Moran C., Badoual J., Olive G. Maturation of caffeine N-demethylation in infancy: a study using the 13CO2 breath test. Pediatr Res. 1988 Jun;23(6):632–636. doi: 10.1203/00006450-198806000-00021. [DOI] [PubMed] [Google Scholar]
  18. Pons G., Carrier O., Richard M. O., Rey E., d'Athis P., Moran C., Badoual J., Olive G. Developmental changes of caffeine elimination in infancy. Dev Pharmacol Ther. 1988;11(5):258–264. doi: 10.1159/000457700. [DOI] [PubMed] [Google Scholar]
  19. Sesardic D., Boobis A. R., Murray B. P., Murray S., Segura J., de la Torre R., Davies D. S. Furafylline is a potent and selective inhibitor of cytochrome P450IA2 in man. Br J Clin Pharmacol. 1990 Jun;29(6):651–663. doi: 10.1111/j.1365-2125.1990.tb03686.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Valero F., de la Torre R., Boobis A. R., Murray S., Segura J. Assay of caffeine metabolism in vitro by human liver microsomes using radio-high-performance liquid chromatography. J Pharm Biomed Anal. 1990;8(8-12):783–787. doi: 10.1016/0731-7085(90)80121-5. [DOI] [PubMed] [Google Scholar]
  21. Wrighton S. A., Molowa D. T., Guzelian P. S. Identification of a cytochrome P-450 in human fetal liver related to glucocorticoid-inducible cytochrome P-450HLp in the adult. Biochem Pharmacol. 1988 Aug 1;37(15):3053–3055. doi: 10.1016/0006-2952(88)90299-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES