Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1994 Dec;38(6):513–519. doi: 10.1111/j.1365-2125.1994.tb04392.x

Pravastatin inhibits cellular cholesterol synthesis and increases low density lipoprotein receptor activity in macrophages: in vitro and in vivo studies.

S Keidar 1, M Aviram 1, I Maor 1, J Oiknine 1, J G Brook 1
PMCID: PMC1364914  PMID: 7888289

Abstract

1. Pravastatin, a 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) inhibitor, is a highly selective inhibitor of hepatic cholesterol synthesis. We studied the in vivo and in vitro effects of pravastatin on macrophage cholesterol metabolism. 2. The effects of incubating pravastatin with human monocyte derived macrophages (HMDM), mouse peritoneal macrophages (MPM) and a J-774 A.1 macrophage-like cell line, on macrophage cholesterol synthesis, cellular degradation of native low density lipoprotein (LDL) and modified LDL, cholesterol efflux from these cells and the cholesterol esterification rate were determined. 3. Pravastatin was administered either as one 40 mg dose or 40 mg daily for 8 weeks to normocholesterolaemic and hypercholesterolaemic individuals. The effects on cholesterol synthesis and degradation in monocytes derived from these subjects were studied. 4. In vitro, pravastatin resulted in a dose-dependent inhibition of macrophage cholesterol synthesis. Cellular degradation of native LDL increased by 119% in the presence of 0.1 mg ml-1 pravastatin. Degradation of both acetyl LDL and oxidized LDL was unaffected. Small concentrations of pravastatin (up to 0.19 micrograms ml-1) increased the cellular cholesterol esterification rate after incubation with LDL, but higher concentrations resulted in an inhibition of the esterification. 5. Single dose pravastatin administration caused a reduction in cholesterol synthesis by the subjects own HMDM by 62% and 47% in normocholesterolaemic and hypercholesterolaemic individuals, respectively. Chronic administration resulted in a 55% inhibition of cholesterol synthesis and a 57% increase in LDL degradation. 6. The results indicate that the selective uptake of pravastatin shown for hepatocytes can be extended to macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviram M., Dankner G., Cogan U., Hochgraf E., Brook J. G. Lovastatin inhibits low-density lipoprotein oxidation and alters its fluidity and uptake by macrophages: in vitro and in vivo studies. Metabolism. 1992 Mar;41(3):229–235. doi: 10.1016/0026-0495(92)90263-a. [DOI] [PubMed] [Google Scholar]
  2. Aviram M., Fuhrman B., Keidar S., Maor I., Rosenblat M., Dankner G., Brook G. Platelet-modified low density lipoprotein induces macrophage cholesterol accumulation and platelet activation. J Clin Chem Clin Biochem. 1989 Jan;27(1):3–12. doi: 10.1515/cclm.1989.27.1.3. [DOI] [PubMed] [Google Scholar]
  3. Aviram M., Keidar S., Brook G. J. Dual effect of lovastatin and simvastatin on LDL-macrophage interaction. Eur J Clin Chem Clin Biochem. 1991 Oct;29(10):657–664. doi: 10.1515/cclm.1991.29.10.657. [DOI] [PubMed] [Google Scholar]
  4. Aviram M. Plasma lipoprotein separation by discontinuous density gradient ultracentrifugation in hyperlipoproteinemic patients. Biochem Med. 1983 Aug;30(1):111–118. doi: 10.1016/0006-2944(83)90013-3. [DOI] [PubMed] [Google Scholar]
  5. Bierman E. L., Stein O., Stein Y. Lipoprotein uptake and metabolism by rat aortic smooth muscle cells in tissue culture. Circ Res. 1974 Jul;35(1):136–150. doi: 10.1161/01.res.35.1.136. [DOI] [PubMed] [Google Scholar]
  6. Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
  7. Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi: 10.1016/s0076-6879(78)52032-6. [DOI] [PubMed] [Google Scholar]
  8. CHIAMORI N., HENRY R. J. Study of the ferric chloride method for determination of total cholesterol and cholesterol esters. Am J Clin Pathol. 1959 Apr;31(4):305–309. doi: 10.1093/ajcp/31.4.305. [DOI] [PubMed] [Google Scholar]
  9. Germershausen J. I., Hunt V. M., Bostedor R. G., Bailey P. J., Karkas J. D., Alberts A. W. Tissue selectivity of the cholesterol-lowering agents lovastatin, simvastatin and pravastatin in rats in vivo. Biochem Biophys Res Commun. 1989 Feb 15;158(3):667–675. doi: 10.1016/0006-291x(89)92773-3. [DOI] [PubMed] [Google Scholar]
  10. Gerrity R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981 May;103(2):181–190. [PMC free article] [PubMed] [Google Scholar]
  11. Hagemenas F. C., Illingworth D. R. Cholesterol homeostasis in mononuclear leukocytes from patients with familial hypercholesterolemia treated with lovastatin. Arteriosclerosis. 1989 May-Jun;9(3):355–361. doi: 10.1161/01.atv.9.3.355. [DOI] [PubMed] [Google Scholar]
  12. Hoffman R., Brook G. J., Aviram M. Hypolipidemic drugs reduce lipoprotein susceptibility to undergo lipid peroxidation: in vitro and ex vivo studies. Atherosclerosis. 1992 Mar;93(1-2):105–113. doi: 10.1016/0021-9150(92)90204-t. [DOI] [PubMed] [Google Scholar]
  13. Kempen H. J., Vermeer M., de Wit E., Havekes L. M. Vastatins inhibit cholesterol ester accumulation in human monocyte-derived macrophages. Arterioscler Thromb. 1991 Jan-Feb;11(1):146–153. doi: 10.1161/01.atv.11.1.146. [DOI] [PubMed] [Google Scholar]
  14. Koga T., Shimada Y., Kuroda M., Tsujita Y., Hasegawa K., Yamazaki M. Tissue-selective inhibition of cholesterol synthesis in vivo by pravastatin sodium, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Biochim Biophys Acta. 1990 Jul 16;1045(2):115–120. doi: 10.1016/0005-2760(90)90139-o. [DOI] [PubMed] [Google Scholar]
  15. Krauss R. M., Burke D. J. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res. 1982 Jan;23(1):97–104. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. McNamara D. J., Davidson N. O., Fernandez S. In vitro cholesterol synthesis in freshly isolated mononuclear cells of human blood: effect of in vivo administration of clofibrate and/or cholestyramine. J Lipid Res. 1980 Jan;21(1):65–71. [PubMed] [Google Scholar]
  18. Nakaya N., Homma Y., Tamachi H., Shigematsu H., Hata Y., Goto Y. The effect of CS-514 on serum lipids and apolipoproteins in hypercholesterolemic subjects. JAMA. 1987 Jun 12;257(22):3088–3093. [PubMed] [Google Scholar]
  19. Owens D., Collins P., Johnson A., Tighe O., Robinson K., Tomkin G. H. Hypercholesterolaemia: simvastatin and pravastatin alter cholesterol metabolism by different mechanisms. Biochim Biophys Acta. 1991 Apr 3;1082(3):303–309. doi: 10.1016/0005-2760(91)90206-w. [DOI] [PubMed] [Google Scholar]
  20. Reihnér E., Rudling M., Ståhlberg D., Berglund L., Ewerth S., Björkhem I., Einarsson K., Angelin B. Influence of pravastatin, a specific inhibitor of HMG-CoA reductase, on hepatic metabolism of cholesterol. N Engl J Med. 1990 Jul 26;323(4):224–228. doi: 10.1056/NEJM199007263230403. [DOI] [PubMed] [Google Scholar]
  21. Shaw M. K., Newton R. S., Sliskovic D. R., Roth B. D., Ferguson E., Krause B. R. Hep-G2 cells and primary rat hepatocytes differ in their response to inhibitors of HMG-CoA reductase. Biochem Biophys Res Commun. 1990 Jul 31;170(2):726–734. doi: 10.1016/0006-291x(90)92151-o. [DOI] [PubMed] [Google Scholar]
  22. Stone B. G., Evans C. D., Prigge W. F., Duane W. C., Gebhard R. L. Lovastatin treatment inhibits sterol synthesis and induces HMG-CoA reductase activity in mononuclear leukocytes of normal subjects. J Lipid Res. 1989 Dec;30(12):1943–1952. [PubMed] [Google Scholar]
  23. Sundberg E. E., Illingworth D. R. Effects of hypolipidemic therapy on cholesterol homeostasis in freshly isolated mononuclear cells from patients with heterozygous familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7631–7635. doi: 10.1073/pnas.80.24.7631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Swaney J. B., Kuehl K. S. Separation of apolipoproteins by an acrylamide-gradient sodium dodecyl sulfate gel electrophoresis system. Biochim Biophys Acta. 1976 Oct 28;446(2):561–565. doi: 10.1016/0005-2795(76)90027-1. [DOI] [PubMed] [Google Scholar]
  25. Tsujita Y., Kuroda M., Shimada Y., Tanzawa K., Arai M., Kaneko I., Tanaka M., Masuda H., Tarumi C., Watanabe Y. CS-514, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase: tissue-selective inhibition of sterol synthesis and hypolipidemic effect on various animal species. Biochim Biophys Acta. 1986 Jun 11;877(1):50–60. doi: 10.1016/0005-2760(86)90117-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES