Abstract
1. Theophylline metabolism was studied using seven human cytochrome P-450 isoforms (CYPs), namely CYP1A1, 1A2, 2A6, 2B6, 2D6, 2E1 and 3A4, and microsomal epoxide hydroxylase (EH), expressed in human B-lymphoblastoid cell lines. 2. At a high theophylline concentration of 10 mM four CYPs (1A1, 1A2, 2D6, 2E1) catalyzed the metabolism of theophylline. 3. Theophylline had the highest affinity (apparent Km range 0.2-1.0 mM) for the CYP1A subfamily and the kinetics of metabolic formation mediated by CYP1A2 indicated substrate-inhibition (Ki range 9-16 mM). 4. CYP1A2 catalyzed the demethylation of theophylline as well as its hydroxylation, and was associated with the highest intrinsic clearance (1995 l h-1 per mol CYP) to 1,3-dimethyluric acid (DMU). Therefore, this isoform can be considered to be the most important enzyme involved in theophylline metabolism in vitro. 5. CYP2E1 was responsible for a relatively high intrinsic clearance by 8-hydroxylation (289 l h-1 per mol CYP). The apparent Km value of this reaction was about 15 mM, suggesting that CYP2E1 may be the low-affinity high-capacity isoform involved in theophylline metabolism. 6. The affinity of theophylline for CYP1A1 was comparable with that of its homologue 1A2. When induced, the participation of CYP1A1 in theophylline metabolism may be important. 7. CYP2D6 played only a minor role and CYP3A4 was not active in the in vitro metabolism of theophylline. 8. Our findings confirm the major role of CYP1A2 in theophylline metabolism and explain why in vivo the elimination kinetics of theophylline are non-linear and in vitro theophylline metabolism by human liver microsomes does not obey monophasic kinetics. 9. The data suggest also that not only tobacco smoking but also chronic alcohol intake may influence theophylline elimination in man as ethanol induces CYP2E1.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campbell M. E., Grant D. M., Inaba T., Kalow W. Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes. Drug Metab Dispos. 1987 Mar-Apr;15(2):237–249. [PubMed] [Google Scholar]
- Conney A. H. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer Res. 1982 Dec;42(12):4875–4917. [PubMed] [Google Scholar]
- Emirgil C., Sobol B. J. Pulmonary function in former alcoholics. Chest. 1977 Jul;72(1):45–51. doi: 10.1378/chest.72.1.45. [DOI] [PubMed] [Google Scholar]
- Fuhr U., Doehmer J., Battula N., Wölfel C., Kudla C., Keita Y., Staib A. H. Biotransformation of caffeine and theophylline in mammalian cell lines genetically engineered for expression of single cytochrome P450 isoforms. Biochem Pharmacol. 1992 Jan 22;43(2):225–235. doi: 10.1016/0006-2952(92)90282-n. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J., Skoda R. C., Kimura S., Umeno M., Zanger U. M., Nebert D. W., Gelboin H. V., Hardwick J. P., Meyer U. A. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988 Feb 4;331(6155):442–446. doi: 10.1038/331442a0. [DOI] [PubMed] [Google Scholar]
- Grygiel J. J., Birkett D. J. Cigarette smoking and theophylline clearance and metabolism. Clin Pharmacol Ther. 1981 Oct;30(4):491–496. doi: 10.1038/clpt.1981.193. [DOI] [PubMed] [Google Scholar]
- Grygiel J. J., Miners J. O., Drew R., Birkett D. J. Differential effects of cimetidine on theophylline metabolic pathways. Eur J Clin Pharmacol. 1984;26(3):335–340. doi: 10.1007/BF00548764. [DOI] [PubMed] [Google Scholar]
- Grygiel J. J., Wing L. M., Farkas J., Birkett D. J. Effects of allopurinol on theophylline metabolism and clearance. Clin Pharmacol Ther. 1979 Nov;26(5):660–667. doi: 10.1002/cpt1979265660. [DOI] [PubMed] [Google Scholar]
- Gu L., Gonzalez F. J., Kalow W., Tang B. K. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics. 1992 Apr;2(2):73–77. doi: 10.1097/00008571-199204000-00004. [DOI] [PubMed] [Google Scholar]
- Gundert-Remy U., Hildebrandt R., Hengen N., Weber E. Non-linear elimination processes of theophylline. Eur J Clin Pharmacol. 1983;24(1):71–78. doi: 10.1007/BF00613930. [DOI] [PubMed] [Google Scholar]
- Hunt S. N., Jusko W. J., Yurchak A. M. Effect of smoking on theophylline disposition. Clin Pharmacol Ther. 1976 May;19(5 Pt 1):546–551. doi: 10.1002/cpt1976195part1546. [DOI] [PubMed] [Google Scholar]
- Jusko W. J., Gardner M. J., Mangione A., Schentag J. J., Koup J. R., Vance J. W. Factors affecting theophylline clearances: age, tobacco, marijuana, cirrhosis, congestive heart failure, obesity, oral contraceptives, benzodiazepines, barbiturates, and ethanol. J Pharm Sci. 1979 Nov;68(11):1358–1366. doi: 10.1002/jps.2600681106. [DOI] [PubMed] [Google Scholar]
- Jusko W. J., Schentag J. J., Clark J. H., Gardner M., Yurchak A. M. Enhanced biotransformation of theophylline in marihuana and tobacco smokers. Clin Pharmacol Ther. 1978 Oct;24(4):405–410. [PubMed] [Google Scholar]
- Koop D. R., Crump B. L., Nordblom G. D., Coon M. J. Immunochemical evidence for induction of the alcohol-oxidizing cytochrome P-450 of rabbit liver microsomes by diverse agents: ethanol, imidazole, trichloroethylene, acetone, pyrazole, and isoniazid. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4065–4069. doi: 10.1073/pnas.82.12.4065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loi C. M., Day J. D., Jue S. G., Bush E. D., Costello P., Dewey L. V., Vestal R. E. Dose-dependent inhibition of theophylline metabolism by disulfiram in recovering alcoholics. Clin Pharmacol Ther. 1989 May;45(5):476–486. doi: 10.1038/clpt.1989.61. [DOI] [PubMed] [Google Scholar]
- Loi C. M., Parker B. M., Cusack B. J., Vestal R. Individual and combined effects of cimetidine and ciprofloxacin on theophylline metabolism in male nonsmokers. Br J Clin Pharmacol. 1993 Sep;36(3):195–200. doi: 10.1111/j.1365-2125.1993.tb04216.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loi C. M., Wei X. X., Vestal R. E. Inhibition of theophylline metabolism by mexiletine in young male and female nonsmokers. Clin Pharmacol Ther. 1991 May;49(5):571–580. doi: 10.1038/clpt.1991.67. [DOI] [PubMed] [Google Scholar]
- McKinnon R. A., Hall P. D., Quattrochi L. C., Tukey R. H., McManus M. E. Localization of CYP1A1 and CYP1A2 messenger RNA in normal human liver and in hepatocellular carcinoma by in situ hybridization. Hepatology. 1991 Nov;14(5):848–856. doi: 10.1002/hep.1840140517. [DOI] [PubMed] [Google Scholar]
- Miller C. A., Slusher L. B., Vesell E. S. Polymorphism of theophylline metabolism in man. J Clin Invest. 1985 May;75(5):1415–1425. doi: 10.1172/JCI111843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miners J. O., Wing L. M., Lillywhite K. J., Robson R. A. Selectivity and dose-dependency of the inhibitory effect of propranolol on theophylline metabolism in man. Br J Clin Pharmacol. 1985 Sep;20(3):219–223. doi: 10.1111/j.1365-2125.1985.tb05064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
- Ogilvie R. I. Clinical pharmacokinetics of theophylline. Clin Pharmacokinet. 1978 Jul-Aug;3(4):267–293. doi: 10.2165/00003088-197803040-00002. [DOI] [PubMed] [Google Scholar]
- Piafsky K. M., Sitar D. S., Rangno R. E., Ogilvie R. I. Theophylline disposition in patients with hepatic cirrhosis. N Engl J Med. 1977 Jun 30;296(26):1495–1497. doi: 10.1056/NEJM197706302962603. [DOI] [PubMed] [Google Scholar]
- Piafsky K. M., Sitar D. S., Rangno R. E., Ogilvie R. I. Theophylline kinetics in acute pulmonary edema. Clin Pharmacol Ther. 1977 Mar;21(3):310–316. doi: 10.1002/cpt1977213310. [DOI] [PubMed] [Google Scholar]
- Robson R. A., Matthews A. P., Miners J. O., McManus M. E., Meyer U. A., Hall P. M., Birkett D. J. Characterisation of theophylline metabolism in human liver microsomes. Br J Clin Pharmacol. 1987 Sep;24(3):293–300. doi: 10.1111/j.1365-2125.1987.tb03172.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarkar M. A., Hunt C., Guzelian P. S., Karnes H. T. Characterization of human liver cytochromes P-450 involved in theophylline metabolism. Drug Metab Dispos. 1992 Jan-Feb;20(1):31–37. [PubMed] [Google Scholar]
- Shimada T., Iwasaki M., Martin M. V., Guengerich F. P. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA 1535/pSK1002. Cancer Res. 1989 Jun 15;49(12):3218–3228. [PubMed] [Google Scholar]
- Shimada T., Yamazaki H., Mimura M., Inui Y., Guengerich F. P. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994 Jul;270(1):414–423. [PubMed] [Google Scholar]
- Shimada T., Yun C. H., Yamazaki H., Gautier J. C., Beaune P. H., Guengerich F. P. Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens. Mol Pharmacol. 1992 May;41(5):856–864. [PubMed] [Google Scholar]
- Tang-Liu D. D., Williams R. L., Riegelman S. Nonlinear theophylline elimination. Clin Pharmacol Ther. 1982 Mar;31(3):358–369. doi: 10.1038/clpt.1982.46. [DOI] [PubMed] [Google Scholar]
- Upton R. A. Pharmacokinetic interactions between theophylline and other medication (Part I). Clin Pharmacokinet. 1991 Jan;20(1):66–80. doi: 10.2165/00003088-199120010-00005. [DOI] [PubMed] [Google Scholar]
- Wrighton S. A., Thomas P. E., Molowa D. T., Haniu M., Shively J. E., Maines S. L., Watkins P. B., Parker G., Mendez-Picon G., Levin W. Characterization of ethanol-inducible human liver N-nitrosodimethylamine demethylase. Biochemistry. 1986 Nov 4;25(22):6731–6735. doi: 10.1021/bi00370a001. [DOI] [PubMed] [Google Scholar]
