Abstract
1. The pharmacokinetics of ethylmorphine after administration of a single dose of the cough mixture Cosylan were investigated in 10 healthy subjects. 2. The median urinary recovery of ethylmorphine and measured metabolites was 77% over 48 h. The median tmax of unchanged ethylmorphine was 45 min, and the terminal elimination t1/2 was 2 h. Ethylmorphine-6-glucuronide was found to be the major metabolite. 3. Two subjects had significantly lower urinary recovery (0.48 h) of morphine and morphine-glucuronides than the remainder. Furthermore, these two had urinary metabolic ratios (MRO) and partial metabolic clearances (CLmO) for O-deethylation of ethylmorphine tentatively classifying them phenotypically as poor metabolisers of the debrisoquine/sparteine type. 4. Genotyping for cytochrome P450 (CYP) 2D6 alleles revealed five homozygote (wt/wt) and five heterozygote subjects. Two subjects phenotypically classified as poor metabolisers were genotypically CYP2D6A/wt and CYP2D6D/wt, respectively. 5. Serum and urine samples taken more than 8 and 24 h after administration of ethyl-morphine respectively, contained morphine and morphine-glucuronides, but no ethylmorphine, ethylmorphine-6-glucuronide or (serum only) norethylmorphine. Norethylmorphine could be detected after hydrolysis of urine samples in all subjects. The urinary recovery of the active metabolites morphine and morphine-6-glucuronide after administration of ethylmorphine varied by a factor of 9 between individuals. 6. The wide variation in recovery of morphine and morphine-glucuronides after oral administration of ethylmorphine could not be explained simply by a difference in CYP2D6 genotype. Constitutional variation in other enzymatic pathways involved in ethylmorphine metabolism is probably crucial. Ratios of morphine to parent drug cannot be used to distinguish the source of morphine after administration of ethylmorphine. Norethylmorphine should be included in urine assays for opiates in forensic toxicology, and no firm conclusions about the source of morphine are possible based on serum samples obtained more than 24 h after drug administration.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADLER T. K., FUJIMOTO J. M., WAY E. L., BAKER E. M. The metabolic fate of codeine in man. J Pharmacol Exp Ther. 1955 Jul;114(3):251–262. [PubMed] [Google Scholar]
- Aasmundstad T. A., Ripel A., Bodd E., Bjørneboe A., Mørland J. Different biotransformation of morphine in isolated liver cells from guinea pig and rat. Biochem Pharmacol. 1993 Sep 14;46(6):961–968. doi: 10.1016/0006-2952(93)90659-k. [DOI] [PubMed] [Google Scholar]
- Chen Z. R., Irvine R. J., Somogyi A. A., Bochner F. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci. 1991;48(22):2165–2171. doi: 10.1016/0024-3205(91)90150-a. [DOI] [PubMed] [Google Scholar]
- Cholerton S., Daly A. K., Idle J. R. The role of individual human cytochromes P450 in drug metabolism and clinical response. Trends Pharmacol Sci. 1992 Dec;13(12):434–439. doi: 10.1016/0165-6147(92)90140-2. [DOI] [PubMed] [Google Scholar]
- Coughtrie M. W., Ask B., Rane A., Burchell B., Hume R. The enantioselective glucuronidation of morphine in rats and humans. Evidence for the involvement of more than one UDP-glucuronosyltransferase isoenzyme. Biochem Pharmacol. 1989 Oct 1;38(19):3273–3280. doi: 10.1016/0006-2952(89)90625-4. [DOI] [PubMed] [Google Scholar]
- Gerdin E., Rane A. N-demethylation of ethylmorphine in pregnant and non-pregnant women and in men: an evaluation of the effects of sex steroids. Br J Clin Pharmacol. 1992 Sep;34(3):250–255. doi: 10.1111/j.1365-2125.1992.tb04132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gjerde H., Fongen U., Gundersen H., Christophersen A. S. Evaluation of a method for simultaneous quantification of codeine, ethylmorphine and morphine in blood. Forensic Sci Int. 1991 Oct;51(1):105–110. doi: 10.1016/0379-0738(91)90210-a. [DOI] [PubMed] [Google Scholar]
- Gjerde H., Mørland J. A case of high opiate tolerance: implications for drug analyses and interpretations. Int J Legal Med. 1991;104(4):239–240. doi: 10.1007/BF01369814. [DOI] [PubMed] [Google Scholar]
- Gong Q. L., Hedner J., Björkman R., Hedner T. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain. 1992 Feb;48(2):249–255. doi: 10.1016/0304-3959(92)90065-J. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J., Meyer U. A. Molecular genetics of the debrisoquin-sparteine polymorphism. Clin Pharmacol Ther. 1991 Sep;50(3):233–238. doi: 10.1038/clpt.1991.131. [DOI] [PubMed] [Google Scholar]
- Gustafson S., Proper J. A., Bowie E. J., Sommer S. S. Parameters affecting the yield of DNA from human blood. Anal Biochem. 1987 Sep;165(2):294–299. doi: 10.1016/0003-2697(87)90272-7. [DOI] [PubMed] [Google Scholar]
- Hasselström J., Säwe J. Morphine pharmacokinetics and metabolism in humans. Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin Pharmacokinet. 1993 Apr;24(4):344–354. doi: 10.2165/00003088-199324040-00007. [DOI] [PubMed] [Google Scholar]
- Heim M., Meyer U. A. Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet. 1990 Sep 1;336(8714):529–532. doi: 10.1016/0140-6736(90)92086-w. [DOI] [PubMed] [Google Scholar]
- Hunt C. M., Watkins P. B., Saenger P., Stave G. M., Barlascini N., Watlington C. O., Wright J. T., Jr, Guzelian P. S. Heterogeneity of CYP3A isoforms metabolizing erythromycin and cortisol. Clin Pharmacol Ther. 1992 Jan;51(1):18–23. doi: 10.1038/clpt.1992.3. [DOI] [PubMed] [Google Scholar]
- Johansen M., Rasmussen K. E., Christophersen A. S., Skuterud B. Metabolic study of pholcodine in urine using enzyme multiplied immunoassay technique (EMIT) and capillary gas chromatography. Acta Pharm Nord. 1991;3(2):91–94. [PubMed] [Google Scholar]
- Johansson I., Lundqvist E., Bertilsson L., Dahl M. L., Sjöqvist F., Ingelman-Sundberg M. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11825–11829. doi: 10.1073/pnas.90.24.11825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ladona M. G., Spalding D. J., Ekman L., Linström B., Rane A. Human fetal and adult liver metabolism of ethylmorphine. Relation to immunodetected cytochrome P-450 PCN and interactions with important fetal corticosteroids. Biochem Pharmacol. 1989 Oct 1;38(19):3147–3155. doi: 10.1016/0006-2952(89)90607-2. [DOI] [PubMed] [Google Scholar]
- MANNERING G. J., DIXON A. C., BAKER E. M., 3rd, ASAMI T. The in vivo liberation of morphine from codeine in man. J Pharmacol Exp Ther. 1954 Jun;111(2):142–146. [PubMed] [Google Scholar]
- McQuay H. J., Carroll D., Faura C. C., Gavaghan D. J., Hand C. W., Moore R. A. Oral morphine in cancer pain: influences on morphine and metabolite concentration. Clin Pharmacol Ther. 1990 Sep;48(3):236–244. doi: 10.1038/clpt.1990.145. [DOI] [PubMed] [Google Scholar]
- Osborne R., Thompson P., Joel S., Trew D., Patel N., Slevin M. The analgesic activity of morphine-6-glucuronide. Br J Clin Pharmacol. 1992 Aug;34(2):130–138. doi: 10.1111/j.1365-2125.1992.tb04121.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pasternak G. W., Bodnar R. J., Clark J. A., Inturrisi C. E. Morphine-6-glucuronide, a potent mu agonist. Life Sci. 1987 Dec 28;41(26):2845–2849. doi: 10.1016/0024-3205(87)90431-0. [DOI] [PubMed] [Google Scholar]
- Patel M., Tang B. K., Kalow W. Variability of acetaminophen metabolism in Caucasians and Orientals. Pharmacogenetics. 1992 Feb;2(1):38–45. doi: 10.1097/00008571-199202000-00007. [DOI] [PubMed] [Google Scholar]
- Paul D., Standifer K. M., Inturrisi C. E., Pasternak G. W. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther. 1989 Nov;251(2):477–483. [PubMed] [Google Scholar]
- Rane A., Modiri A. R., Gerdin E. Ethylmorphine O-deethylation cosegregates with the debrisoquin genetic metabolic polymorphism. Clin Pharmacol Ther. 1992 Sep;52(3):257–264. doi: 10.1038/clpt.1992.139. [DOI] [PubMed] [Google Scholar]
- Ripel A., Christophersen A. S., Bjørneboe A., Mørland J. Morphine formation after intake of ethylmorphine. Pharmacol Toxicol. 1992 Mar;70(3):228–229. doi: 10.1111/j.1600-0773.1992.tb00462.x. [DOI] [PubMed] [Google Scholar]
- Rivier L., Staub C., Giroud C. Caractérisation de la prise d'opiacés (héroïne, morphine, codéine et éthylmorphine) par l'intermédiaire de l'analyse d'urine: quels critères adopter? Schweiz Rundsch Med Prax. 1991 Oct 15;80(42):1135–1139. [PubMed] [Google Scholar]
- Smith M. T., Watt J. A., Cramond T. Morphine-3-glucuronide--a potent antagonist of morphine analgesia. Life Sci. 1990;47(6):579–585. doi: 10.1016/0024-3205(90)90619-3. [DOI] [PubMed] [Google Scholar]
- Sullivan A. F., McQuay H. J., Bailey D., Dickenson A. H. The spinal antinociceptive actions of morphine metabolites morphine-6-glucuronide and normorphine in the rat. Brain Res. 1989 Mar 20;482(2):219–224. doi: 10.1016/0006-8993(89)91184-0. [DOI] [PubMed] [Google Scholar]
- Svensson J. O., Rane A., Säwe J., Sjöqvist F. Determination of morphine, morphine-3-glucuronide and (tentatively) morphine-6-glucuronide in plasma and urine using ion-pair high-performance liquid chromatography. J Chromatogr. 1982 Jul 9;230(2):427–432. doi: 10.1016/s0378-4347(00)80494-6. [DOI] [PubMed] [Google Scholar]
- Xu B. Q., Bugge A., Gundersen H., Malterud K. E., Christophersen A. S. Synthesis and spectroscopic studies of norethylmorphine. J Pharm Biomed Anal. 1992 Apr;10(4):303–307. doi: 10.1016/0731-7085(92)80043-m. [DOI] [PubMed] [Google Scholar]
- Yue Q. Y., Svensson J. O., Alm C., Sjöqvist F., Säwe J. Interindividual and interethnic differences in the demethylation and glucuronidation of codeine. Br J Clin Pharmacol. 1989 Dec;28(6):629–637. doi: 10.1111/j.1365-2125.1989.tb03555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]