Abstract
1. It was the aim of the present study to investigate the role of the beta-adrenergic receptor in hypoxaemia induced vasodilatation in the human forearm. 2. The study was performed in 12 non-smoking male volunteers. In six subjects the local vascular effects of intra-arterially (i.a.) infused propranolol (0.1 mu kg-1 min-1) was determined during normoxaemia and hypoxaemia (peripheral oxygen saturation; SpO2 80%), and compared with the contra-lateral (control) arm. beta-adrenergic receptor blockade by propranolol was confirmed by i.a. infusions of adrenaline. In six other subjects the effects of incremental hypoxaemia (SpO2 90, 85, 80%) on forearm- and finger blood flow was investigated. A difference between these vascular beds is the absence of vascular beta-adrenergic receptors in the finger. Forearm- and finger blood flow were measured by venous occlusion plethysmography. Plasma levels of (nor-)adrenaline were determined in both arterial and venous blood samples. Hypoxaemia was attained by gradual decompression of a hypobaric chamber and individually adjusted. 3. During normoxaemia the single infusion of propranolol did not influence forearm vascular resistance. In contrast, during hypoxaemia a net vasoconstriction was observed in the arm treated with propranolol, which was significantly different (P = 0.009) from the vasodilatation in the control arm (mean difference in response 40%; 95% confidence interval 13.2-66.8). The net arterio-venous spillover of noradrenaline from the forearm increased after the first 15 min of hypoxaemia (P < 0.05) and returned to baseline in the next 15 min. Arterial and venous plasma levels of adrenaline during hypoxaemia remained unchanged compared with normoxaemia. In the second set of experiments incremental levels of hypoxaemia induced a vasoconstriction in the finger, which was significantly different (P = 0.025) from the vasodilatation in the forearm (mean difference in response 300%; 95% confidence interval 63-537). 4. The data indicate that beta-adrenergic receptors contribute to hypoxaemia induced vasodilatation, despite unaltered adrenaline plasma concentrations.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. P., Allen W. J., Barcroft H., Edholm O. G., Manning G. W. Circulatory changes during fainting and coma caused by oxygen lack. J Physiol. 1946 Apr 15;104(4):426–434. [PMC free article] [PubMed] [Google Scholar]
- Blauw G. J., Westendorp R. G. Asthma deaths in New Zealand: whodunnit? Lancet. 1995 Jan 7;345(8941):2–3. doi: 10.1016/s0140-6736(95)91143-x. [DOI] [PubMed] [Google Scholar]
- Blauw G., Bom A. H., van Brummelen P., Camps J., Arndt J. W., Verdouw P. D., Chang P. C., van Zwieten P. A., Saxena P. R. Effects of 5-hydroxytryptamine on capillary and arteriovenous anastomotic blood flow in the human hand and forearm and in the pig hind leg. J Cardiovasc Pharmacol. 1991 Feb;17(2):316–324. doi: 10.1097/00005344-199102000-00019. [DOI] [PubMed] [Google Scholar]
- Bremner P., Burgess C., McHaffie D., Robinson B., Galletly D., Buckly D., Beasley R., Purdie G., Crane J. The effect of hypercapnia and hypoxemia on the cardiovascular responses to isoproterenol. Clin Pharmacol Ther. 1994 Sep;56(3):302–308. doi: 10.1038/clpt.1994.141. [DOI] [PubMed] [Google Scholar]
- Chang P. C., van der Krogt J. A., Vermeij P., van Brummelen P. Norepinephrine removal and release in the forearm of healthy subjects. Hypertension. 1986 Sep;8(9):801–809. doi: 10.1161/01.hyp.8.9.801. [DOI] [PubMed] [Google Scholar]
- Collins J. M., McDevitt D. G., Shanks R. G., Swanton J. G. The cardio-toxicity of isoprenaline during hypoxia. Br J Pharmacol. 1969 May;36(1):35–45. doi: 10.1111/j.1476-5381.1969.tb08301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartling O. J., Noer I., Svendsen T. L., Clausen J. P., Trap-Jensen J. Selective and non-selective beta-adrenoreceptor blockade in the human forearm. Clin Sci (Lond) 1980 Apr;58(4):279–286. doi: 10.1042/cs0580279. [DOI] [PubMed] [Google Scholar]
- Heistad D. D., Abboud F. M. Dickinson W. Richards Lecture: Circulatory adjustments to hypoxia. Circulation. 1980 Mar;61(3):463–470. doi: 10.1161/01.cir.61.3.463. [DOI] [PubMed] [Google Scholar]
- Jie K., Van Brummelen P., Vermey P., Timmermans P. B., Van Zwieten P. A. Postsynaptic alpha 1- and alpha 2-adrenoceptors in human blood vessels: interactions with exogenous and endogenous catecholamines. Eur J Clin Invest. 1987 Apr;17(2):174–181. doi: 10.1111/j.1365-2362.1987.tb02397.x. [DOI] [PubMed] [Google Scholar]
- Maisel A. S., Motulsky H. J., Insel P. A. Externalization of beta-adrenergic receptors promoted by myocardial ischemia. Science. 1985 Oct 11;230(4722):183–186. doi: 10.1126/science.2994229. [DOI] [PubMed] [Google Scholar]
- Mukherjee A., Bush L. R., McCoy K. E., Duke R. J., Hagler H., Buja L. M., Willerson J. T. Relationship between beta-adrenergic receptor numbers and physiological responses during experimental canine myocardial ischemia. Circ Res. 1982 May;50(5):735–741. doi: 10.1161/01.res.50.5.735. [DOI] [PubMed] [Google Scholar]
- Richardson D. W., Kontos H. A., Raper A. J., Patterson J. L., Jr Modification by beta-adrenergic blockade of the circulatory respones to acute hypoxia in man. J Clin Invest. 1967 Jan;46(1):77–85. doi: 10.1172/JCI105513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowell L. B., Blackmon J. R. Lack of sympathetic vasoconstriction in hypoxemic humans at rest. Am J Physiol. 1986 Sep;251(3 Pt 2):H562–H570. doi: 10.1152/ajpheart.1986.251.3.H562. [DOI] [PubMed] [Google Scholar]
- Rowell L. B., Johnson D. G., Chase P. B., Comess K. A., Seals D. R. Hypoxemia raises muscle sympathetic activity but not norepinephrine in resting humans. J Appl Physiol (1985) 1989 Apr;66(4):1736–1743. doi: 10.1152/jappl.1989.66.4.1736. [DOI] [PubMed] [Google Scholar]
- Sagawa S., Shiraki K., Miki K., Tajima F. Cardiovascular responses to upright tilt at a simulated altitude of 3,700 m in men. Aviat Space Environ Med. 1993 Mar;64(3 Pt 1):219–223. [PubMed] [Google Scholar]
- Westendorp R. G., Roos A. N., van der Hoeven H. G., Tjiong M. Y., Simons R., Frölich M., Souverijn J. H., Meinders A. E. Atrial natriuretic peptide improves pulmonary gas exchange in subjects exposed to hypoxia. Am Rev Respir Dis. 1993 Aug;148(2):304–309. doi: 10.1164/ajrccm/148.2.304. [DOI] [PubMed] [Google Scholar]