Abstract
1. Four Merino wethers were exposed to dry bulb temperatures ranging from approximately 20 to 60° C, and the concurrent changes in respiratory frequency, tidal volume, respiratory minute volume, alveolar ventilation, dead space ventilation, carbon dioxide output, rectal temperature, and arterial and mixed venous blood, CO2 content, CO2 partial pressure and pH were established.
2. The respiratory response to heat exposure showed two phases. Respiratory minute volume was initially increased by a rise in the respiratory frequency, while tidal volume decreased. After more prolonged exposure there was a second phase in which respiratory minute volume was further increased by an increase in the tidal volume; respiratory frequency was now slower than in the first phase but was still well above control values.
3. The increase in respiratory minute volume during the first phase of the response was restricted almost entirely to the respiratory dead space; changes in blood CO2 and pH were slight. In the second phase, respiratory minute volume showed a much greater increase, and a change of alveolar ventilation to about 5 times the control level resulted in severe respiratory alkalosis.
4. Contrary to findings in cattle, the slower, deeper form of respiration could be elicited even with rectal temperature in the normal range. This change in respiration appears to be the result of either peripheral thermoreceptor function or mechanical demands of the respiratory system. The neglect of control of acid—base balance during the second phase indicates the existence of a dominant thermal stimulus or modification of respiratory control mechanisms.
Full text
PDF



















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERS C. [The mechanism of thermal stress in the dog. I. Ventilation and arterial blood gases during thermal stress]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1961;274:125–147. [PubMed] [Google Scholar]
- ALBERS C. [The mechanism of thermal stress in the dog. II. Respiratory metabolism during thermal stress]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1961;274:148–165. [PubMed] [Google Scholar]
- ALBERS C. [The mechanism of thermal stress in the dog. III. Co2 sensitivity of the respiratory center during thermal stress]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1961;274:166–183. [PubMed] [Google Scholar]
- AMOROSO E. C., SCOTT P., WILLIAMS K. G. THE PATTERN OF EXTERNAL RESPIRATION IN THE UNANAESTHETIZED ANIMAL. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:325–347. doi: 10.1098/rspb.1964.0006. [DOI] [PubMed] [Google Scholar]
- ANDERSSON B., GRANT R., LARSSON S. Central control of heat loss mechanisms in the goat. Acta Physiol Scand. 1956 Sep 26;37(2-3):261–280. doi: 10.1111/j.1748-1716.1956.tb01362.x. [DOI] [PubMed] [Google Scholar]
- Anrep G. V., Cannan R. K. The concentration of lactic acid in the blood in experimental alkalaemia and acidaemia. J Physiol. 1923 Dec 28;58(2-3):244–258. doi: 10.1113/jphysiol.1923.sp002121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anrep G. V., Hammouda M. Observations on panting. J Physiol. 1932 Dec 19;77(1):16–34. doi: 10.1113/jphysiol.1932.sp002947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARTLETT R. G., Jr, BRUBACH H. F., TRIMBLE R. C., SPECHT H. Relation of increased airway resistance to breathing work and breath velocity and acceleration patterns with maximum and near maximum breathing effort. J Appl Physiol. 1958 Sep;13(2):194–204. doi: 10.1152/jappl.1958.13.2.194. [DOI] [PubMed] [Google Scholar]
- BARTLETT R. G., Jr, SPECHT H. Energy cost of breathing determined with a simplified technique. J Appl Physiol. 1957 Jul;11(1):84–86. doi: 10.1152/jappl.1957.11.1.84. [DOI] [PubMed] [Google Scholar]
- BIANCA W. Tolerance to severe heat and the behaviour of respiratory minute volume in cattle. Nature. 1962 Sep 22;195:1208–1209. [PubMed] [Google Scholar]
- BLIGH J. THE RECEPTORS CONCERNED IN THE RESPIRATORY RESPONSE TO HUMIDITY IN SHEEP AT HIGH AMBIENT TEMPERATURE. J Physiol. 1963 Oct;168:747–763. doi: 10.1113/jphysiol.1963.sp007220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLIGH J. The receptors concerned in the thermal stimulus to panting in sheep. J Physiol. 1959 Apr 23;146(1):142–151. doi: 10.1113/jphysiol.1959.sp006184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRADLEY A. F., SEVERINGHAUS J. W., STUPFEL M. Accuracy of blood pH and PCO2 determinations. J Appl Physiol. 1956 Sep;9(2):189–196. doi: 10.1152/jappl.1956.9.2.189. [DOI] [PubMed] [Google Scholar]
- Brockway J. M., McDonald J. D., Pullar J. D. Evaporative heat-loss mechanisms in sheep. J Physiol. 1965 Aug;179(3):554–568. doi: 10.1113/jphysiol.1965.sp007680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COTES J. E. The role of body temperature in controlling ventilation during exercise in one normal subject breathing oxygen. J Physiol. 1955 Sep 28;129(3):554–563. doi: 10.1113/jphysiol.1955.sp005377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRAWFORD E. C., Jr Mechanical aspects of panting in dogs. J Appl Physiol. 1962 Mar;17:249–251. doi: 10.1152/jappl.1962.17.2.249. [DOI] [PubMed] [Google Scholar]
- CUNNINGHAM D. J., O'RIORDAN J. L. The effect of a rise in the temperature of the body on the respiratory response to carbon dioxide at rest. Q J Exp Physiol Cogn Med Sci. 1957 Oct;42(4):329–345. doi: 10.1113/expphysiol.1957.sp001278. [DOI] [PubMed] [Google Scholar]
- DENTON D. A., MAXWELL M., MCDONALD I. R., MUNRO J., WILLIAMS W. Renal regulation of the extracellular fluid in acute respiratory acidaemia. Aust J Exp Biol Med Sci. 1952 Dec;30(6):489–510. doi: 10.1038/icb.1952.48. [DOI] [PubMed] [Google Scholar]
- DOUGHERTY R. W., STEWART W. E., NOLD M. M., LINDAHL I. L., MULLENAX C. H., LEEK B. F. Pulmonary absorption of eructated gas in ruminants. Am J Vet Res. 1962 Mar;23:205–212. [PubMed] [Google Scholar]
- Edwards A. W. Regional pulmonary function by lobar spirometry in unanesthetized sheep. J Appl Physiol. 1966 Mar;21(2):388–392. doi: 10.1152/jappl.1966.21.2.388. [DOI] [PubMed] [Google Scholar]
- FARHI L. E., RAHN H. Gas stores of the body and the unsteady state. J Appl Physiol. 1955 Mar;7(5):472–484. doi: 10.1152/jappl.1955.7.5.472. [DOI] [PubMed] [Google Scholar]
- FINDLAY J. D., INGRAM D. L. Brain temperature as a factor in the control of thermal polypnoea in the ox (Bos taurus). J Physiol. 1961 Jan;155:72–85. doi: 10.1113/jphysiol.1961.sp006614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FINDLAY J. D. The respiratory activity of calves subjected to thermal stress. J Physiol. 1957 Apr 30;136(2):300–309. doi: 10.1113/jphysiol.1957.sp005761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Findlay J. D., Whittow G. C. The role of arterial oxygen tension in the respiratory response to localized heating of the hypothalamus and to hyperthermia. J Physiol. 1966 Oct;186(2):333–346. doi: 10.1113/jphysiol.1966.sp008038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARDY J. D. Physiology of temperature regulation. Physiol Rev. 1961 Jul;41:521–606. doi: 10.1152/physrev.1961.41.3.521. [DOI] [PubMed] [Google Scholar]
- HARE W. C. The broncho-pulmonary segments in the sheep. J Anat. 1955 Jul;89(3):387–402. [PMC free article] [PubMed] [Google Scholar]
- HULL W. E., LONG E. C. Respiratory impedance and volume flow at high frequency in dogs. J Appl Physiol. 1961 May;16:439–443. doi: 10.1152/jappl.1961.16.3.439. [DOI] [PubMed] [Google Scholar]
- Hales J. R., Little A., Webster M. E. The semiautomatic determination of whole blood CO2 content. Anal Biochem. 1966 Jul;16(1):114–118. doi: 10.1016/0003-2697(66)90086-8. [DOI] [PubMed] [Google Scholar]
- INGRAM D. L., WHITTOW G. C. The effect of heating the hypothalamus on respiration in the ox (Bos taurus). J Physiol. 1962 Sep;163:200–210. doi: 10.1113/jphysiol.1962.sp006968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KAPPEY F., ALBERS C., SCHMIDT R. [The ventilatory CO2 reaction in dogs during heat tachypnea]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1962;275:312–326. [PubMed] [Google Scholar]
- KILBURN K. H., MCDONALD J., PICCINNI F. P. Effects of ventilatory pattern and body position on lung volume in dogs. J Appl Physiol. 1960 Sep;15:801–806. doi: 10.1152/jappl.1960.15.5.801. [DOI] [PubMed] [Google Scholar]
- MCLEAN J. A. The partition of insensible losses of body weight and heat from cattle under various climatic conditions. J Physiol. 1963 Jul;167:427–447. doi: 10.1113/jphysiol.1963.sp007160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MORROW P. E., VOSTEEN R. E. Pneumotachographic studies in man and dog incorporating a portable wireless transducer. J Appl Physiol. 1953 Jan;5(7):348–360. doi: 10.1152/jappl.1953.5.7.348. [DOI] [PubMed] [Google Scholar]
- SPURR G. B., BARLOW G. Plasma and erythrocyte Na, K, C1 and water in hypothermic and hyperthermic dogs. Am J Physiol. 1959 Sep;197:648–652. doi: 10.1152/ajplegacy.1959.197.3.648. [DOI] [PubMed] [Google Scholar]
- THIELE P., ALBERS C. DIE WASSERDAMPFABGABE DURCH DIE ATEMWEGE UND DER WIRKUNGSGRAD DES WAERMEHECHELNS BEIM WACHEN HUND. Pflugers Arch Gesamte Physiol Menschen Tiere. 1963 Nov 11;278:316–324. [PubMed] [Google Scholar]
- Uyeno K. Studies on the respiration and circulation in the cat: III. The effect of rise of body temperature. J Physiol. 1923 Mar 21;57(3-4):203–209. doi: 10.1113/jphysiol.1923.sp002058. [DOI] [PMC free article] [PubMed] [Google Scholar]


