Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1968 Sep;198(2):405–434.2. doi: 10.1113/jphysiol.1968.sp008614

A preparation of perfused small intestine for the study of absorption in amphibia

D S Parsons, J S Prichard
PMCID: PMC1365331  PMID: 5698278

Abstract

1. A preparation of amphibian small intestine perfused through its vascular system is described. Vascular perfusion with a bicarbonate Ringer solution containing a colloid is used to control the composition of the environment of the submucosal faces of the absorbing cells and to carry away for collection any material extruded from these cells. Oxygenation of the mucosal cells is derived primarily from fluid circulated through the intestinal lumen. The preparation exhibits physiological properties of transport for periods of up to 5 hr. After 5 hr perfusion the epithelial cells show no signs of gross cellular damage when examined either by light or by electron microscopy.

2. The relationship between the hydrostatic pressure at the mesenteric artery and the rate of perfusion through the vascular bed is substantially linear. The pressure—flow relationships in the mesenteric bed, including an apparent `critical closing pressure', are primarily determined by the hydrostatic pressure in the intestinal lumen. Alterations in the hydrostatic pressure in the intestinal lumen also change the relative proportions of the vascular infusate which appear in the portal venous effluent and in the fluid exuded from the serosal surface of the preparation (`sweat'). Hydrostatic distension pressures above about 10 cm H2O reduce the rate of collection of fluid from the portal vein and increase the rate of collection of `sweat'.

3. An increase in the rate of vascular perfusion increases the total rate of glucose appearance although the glucose concentrations in both the portal effluent and the `sweat' are reduced.

4. The glucose translocation rate is related in an alinear saturable fashion to the luminal concentration of glucose. By making a correction for metabolic loss of glucose during its passage through the intestinal cell, the relationship existing between the lumen concentration and the uptake of the sugar by the mucosal cells has been calculated. This relationship is found to fit Michaelis—Menten type kinetics. The Km of the intestinal translocation process for glucose in Rana pipiens was 0·45 ± 0·13 (4) μM. The mean Vmax was 137·5 ± 35·3 (4) μM/hr/g fat-free dry wt.

5. When phlorrhizin (10-5 M) is added to the vascular perfusate, no inhibition of glucose transport is seen for at least 60 min. When strophanthin is added to the vascular perfusate (5 × 10-5 M), a markedly greater inhibition of glucose transport is observed than when it is introduced to the luminal circulation.

6. Earlier studies of the vascular perfusion of isolated small intestine are tabulated. The experimental findings are discussed in relation to a model of the mode of action of the epithelial cell for glucose transport.

Full text

PDF
405

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AGAR W. T., HIRD F. J., SIDHU G. S. The uptake of amino acids by the intestine. Biochim Biophys Acta. 1954 May;14(1):80–84. doi: 10.1016/0006-3002(54)90134-1. [DOI] [PubMed] [Google Scholar]
  2. ATKINSON R. M., PARSONS B. J., SMYTH D. H. The intestinal absorption of glucose. J Physiol. 1957 Mar 11;135(3):581–589. doi: 10.1113/jphysiol.1957.sp005732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURTON A. C. On the physical equilibrium of small blood vessels. Am J Physiol. 1951 Feb;164(2):319–329. doi: 10.1152/ajplegacy.1951.164.2.319. [DOI] [PubMed] [Google Scholar]
  4. CHAIKOFF I. L., KATZ J., KIYASU J. Y. Nature of the 14C compounds recovered in portal plasma after enteral administration of 14C-glucose. Biochim Biophys Acta. 1956 Aug;21(2):286–290. doi: 10.1016/0006-3002(56)90009-9. [DOI] [PubMed] [Google Scholar]
  5. CLARKSON T. W., ROTHSTEIN A. Transport of monovalent cations by the isolated small intestine of the rat. Am J Physiol. 1960 Nov;199:898–906. doi: 10.1152/ajplegacy.1960.199.5.898. [DOI] [PubMed] [Google Scholar]
  6. CONWAY E. J. Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. Physiol Rev. 1957 Jan;37(1):84–132. doi: 10.1152/physrev.1957.37.1.84. [DOI] [PubMed] [Google Scholar]
  7. CURRAN P. F., MACINTOSH J. R. A model system for biological water transport. Nature. 1962 Jan 27;193:347–348. doi: 10.1038/193347a0. [DOI] [PubMed] [Google Scholar]
  8. CURRAN P. F. Na, Cl, and water transport by rat ileum in vitro. J Gen Physiol. 1960 Jul;43:1137–1148. doi: 10.1085/jgp.43.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CURRAN P. F., SOLOMON A. K. Ion and water fluxes in the ileum of rats. J Gen Physiol. 1957 Sep 20;41(1):143–168. doi: 10.1085/jgp.41.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
  11. DAHLQVIST A. Determination of maltase and isomaltase activities with a glucose-oxidase reagent. Biochem J. 1961 Sep;80:547–551. doi: 10.1042/bj0800547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
  13. Dale H. H., Laidlaw P. P. The physiological action of beta-iminazolylethylamine. J Physiol. 1910 Dec 31;41(5):318–344. doi: 10.1113/jphysiol.1910.sp001406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FISHER R. B., PARSONS D. S. A preparation of surviving rat small intestine for the study of absorption. J Physiol. 1949 Dec 15;110(1-2):36-46, pl. doi: 10.1113/jphysiol.1949.sp004419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. FISHER R. B., PARSONS D. S. Glucose absorption from surviving rat small intestine. J Physiol. 1949 Dec;110(3-4):281–293. doi: 10.1113/jphysiol.1949.sp004438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GARRY R. C., HOLMES M., WISHART M. An in vitro preparation of the rabbit colon perfused through the inferior mesenteric artery. J Physiol. 1957 Dec 3;139(2):3–4P. [PubMed] [Google Scholar]
  17. Gerber G. B., Remy-Defraigne J. DNA metabolism in perfused organs. II. Incorporation into DNA and catabolism of thymidine at different levels of substrate by normal and x-irradiated liver and intestine. Arch Int Physiol Biochim. 1966 Nov;74(5):785–806. doi: 10.3109/13813456609059952. [DOI] [PubMed] [Google Scholar]
  18. Gilles-Baillien M., Schoffeniels E. Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch Int Physiol Biochim. 1965 Mar;73(2):355–357. doi: 10.3109/13813456509084257. [DOI] [PubMed] [Google Scholar]
  19. Goodford P. J., Leach E. H. The extracellular space of the smooth muscle of the guinea-pig taenia coli. J Physiol. 1966 Sep;186(1):1–10. doi: 10.1113/jphysiol.1966.sp008016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. HESTRIN-LERNER S., SHAPIRO B. Absorption of glucose from the intestine. II. In vivo and perfusion studies. Biochim Biophys Acta. 1954 Jan;13(1):54–60. doi: 10.1016/0006-3002(54)90270-x. [DOI] [PubMed] [Google Scholar]
  21. HINSHAW L. B. Arterial and venous pressure-resistance relationships in perfused leg and intestine. Am J Physiol. 1962 Aug;203:271–274. doi: 10.1152/ajplegacy.1962.203.2.271. [DOI] [PubMed] [Google Scholar]
  22. HUGGETT A. S., NIXON D. A. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet. 1957 Aug 24;273(6991):368–370. doi: 10.1016/s0140-6736(57)92595-3. [DOI] [PubMed] [Google Scholar]
  23. Jacobs P., Bothwell T. H., Charlton R. W. Intestinal iron transport: studies using a loop of gut with an artificial circulation. Am J Physiol. 1966 Apr;210(4):694–700. doi: 10.1152/ajplegacy.1966.210.4.694. [DOI] [PubMed] [Google Scholar]
  24. LEE J. S. Flows and pressures in lymphatic and blood vessels of intestine in water absorption. Am J Physiol. 1961 May;200:979–983. doi: 10.1152/ajplegacy.1961.200.5.979. [DOI] [PubMed] [Google Scholar]
  25. MOHAMED M. S., BEAN J. W. Local and general alterations of blood CO2 and influence of intestinal motility in regulation of intestinal blood flow. Am J Physiol. 1951 Nov;167(2):413–425. doi: 10.1152/ajplegacy.1951.167.2.413. [DOI] [PubMed] [Google Scholar]
  26. McHARDY G. J., PARSONS D. S. The absorption of water and salt from the small intestine of the rat. Q J Exp Physiol Cogn Med Sci. 1957 Jan;42(1):33–48. doi: 10.1113/expphysiol.1957.sp001241. [DOI] [PubMed] [Google Scholar]
  27. OXENDER D. L., CHRISTENSEN H. N. Transcellular concentration as a consequence of intracellular accumulation. J Biol Chem. 1959 Sep;234:2321–2324. [PubMed] [Google Scholar]
  28. PARSONS D. S., PATERSON C. R. FLUID AND SOLUTE TRANSPORT ACROSS FAT COLONIC MUCOSA. Q J Exp Physiol Cogn Med Sci. 1965 Apr;50:220–231. doi: 10.1113/expphysiol.1965.sp001784. [DOI] [PubMed] [Google Scholar]
  29. PARSONS D. S., VAN ROSSUM G. D. Post natal changes in the water and electrolyte content of rat liver. Q J Exp Physiol Cogn Med Sci. 1961 Oct;46:353–368. doi: 10.1113/expphysiol.1961.sp001554. [DOI] [PubMed] [Google Scholar]
  30. PARSONS D. S., WINGATE D. L. Changes in the fluid content of rat intestine segments during fluid absorption in vitro. Biochim Biophys Acta. 1961 Jan 1;46:184–186. doi: 10.1016/0006-3002(61)90661-8. [DOI] [PubMed] [Google Scholar]
  31. Parsons D. S., Prichard J. S. Properties of some model systems for transcellular active transport. Biochim Biophys Acta. 1966 Nov 8;126(3):471–491. doi: 10.1016/0926-6585(66)90006-9. [DOI] [PubMed] [Google Scholar]
  32. Parsons D. S. Sodium chloride absorption by the small intestine and the relationships between salt transport and the absorption of water and some organic molecules. Proc Nutr Soc. 1967;26(1):46–54. doi: 10.1079/pns19670010. [DOI] [PubMed] [Google Scholar]
  33. RIKLIS E., QUASTEL J. H. Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol. 1958 Mar;36(3):347–362. [PubMed] [Google Scholar]
  34. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. SELKURT E. E., SCIBETTA M. P., CULL T. E. Hemodynamics of intestinal circulation. Circ Res. 1958 Jan;6(1):92–99. doi: 10.1161/01.res.6.1.92. [DOI] [PubMed] [Google Scholar]
  36. SIDKY M., BEAN J. W. Influence of rhythmic and tonic contraction of intestinal muscle on blood flow and blood reservoir capacity in dog intestine. Am J Physiol. 1958 May;193(2):386–392. doi: 10.1152/ajplegacy.1958.193.2.386. [DOI] [PubMed] [Google Scholar]
  37. Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. TEXTER E. C., Jr, MERRILL S., SCHWARTZ M., VAN DERSTAPPEN G., HADDY F. J. Relationship of blood flow to pressure in the intestinal vascular bed of the dog. Am J Physiol. 1962 Feb;202:253–256. doi: 10.1152/ajplegacy.1962.202.2.253. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES